


NCERT LINE BY LINE QUESTIONS

08. THE D- & F-BLOCK ELEMENTS

(1.) Among the transition metals of 3d-series, the one that has the highest negative M^{2+}/M standard electrode potential is

(a.)	Ti	(b.)	Cu
(c.)	Mn	(d.)	Ni

(2.) Compute the given reaction of $KMnO_4$ in acidic medium:

 $5Fe^{2+} + MnO_{4}^{-} + 8H^{+} \rightarrow Mn^{2+} + 4H_{2}O + 5X$ $5S^{2-} + 2MnO_{4}^{-} + 16H^{+} \rightarrow 2Mn^{2+} + 8H_{2}O + 5Y$ $ZNO_{2}^{-} + 2MnO_{4}^{-} + 6H^{+} \rightarrow 2Mn^{2+} + ZNO_{3}^{-} + 3H_{2}O$ X, Y and Z are respectively (a.) Fe,S²⁺,6 (b.) Fe³⁺,S,7

(c.) $Fe^{3+}, S, 5$ (d.) $Fe^{2+}, S^{2+}, 5$

(3.) Solution of oxalate is colourless. It is made acidic by adding exceeds of H^+ , then titrated with KMnO₄. Now at a moment if someone has added large amount of KMnO₄ in it then the possible products are

(a.) CO_2, Mn^{2+}, H_2O (b.) CO_2, MnO_2, H_2O (c.) MnO_2, H_2O, CO_2 (d.) $CO_2, MnO_{2^{f}}H_2O, Mn^{2+}$

(4.) Which of the comparison regarding Zn, Cd, Hg is/ are incorrect >.

 $ZnCl_2$ is ionic whereas $CdCl_2$ and $HgCl_2$ are covalent.

II Zn and Cd dissolves in dilute acid (HCl) liberating H_2 but Hg cannot.

III Zn and Cd forming white ppt. of $Zn(OH)_2$ and $Cd(OH)_2$ but Hg form coloured ppt. of Hg(OH)₂.

(a.)	I & III	(b.)	I & II
(C.)	II & III	(d.)	only I

(5.) The silver UK coins are

- (a.) Cu/Zn alloy (b.
- (C.) Ag/Ni alloy

L

(b.) Cu / Ni alloy

(d.) Ag/Au alloy.

(6.) Match the following.

(P) Radioactive lanthanoid	(I) Eu
(Q) Lanthanoid which has $4f^7$ in +2 oxidation state	(II) La
(R) Lanthanoid which has $4f^7$ in +3 oxidation state	(III) Pm
(S) Lanthanoid which has $4f^0$ in +3 oxidation state	(IV) Gd

- (C.) P-I,Q-IILR-IV,S-II (7.) The melting point of copper is higher than that of zinc because (a.) the atomic structure of copper is much denser (b.) the atomic volume of copper is high than zinc (C.) involvement of lesser number of electrons in (d.) involvement of (n-1) d electrons in metallic metallic bonding bonding. (8.) What happens when KCl is heated with H_2SO_4 and potassium dichromate? (b.) $CrCl_3$ is formed. (a.) CrO_2Cl_2 is formed. (d.) $Cr_2(SO_4)$ is formed. (c.) K_2CrO_4 is formed. (9.) Consider the given statements: In its higher oxidation states, manganese forms stable compounds with oxygen and fluorine. 1 Mn^{3+} and Co^{3+} are oxidising agents in aqueous solution. Ш Ti^{2+} and Cr^{2+} are reducing agents in aqueous solution. Ш Which of the given statement(s) is/are correct (b.) I & II only (a.) I only (d.) all of these (C.) II & III only (10.)Electronic configuration of Cu is given as $[Ar] 3d^{10}4s^2$. Then which of the following is correct about Cu(I) and Cu(II)? (a.) E.C. of Cu(I) is $3d^9$ and Cu(II) is $3d^{10}$. (b.) Cu(II) is more stable than Cu(I). (C.) Cu(I) and Cu(II) are equally stable. (d.) Stability of Cu(I) and Cu(II) depends on nature of copper salts. (11.)Assertion: The highest oxidation state of osmium is +6. **Reason:** Osmium is a 6d-block element. (a.) Both A and R are correct and R is correct (b.) Both A and R are correct but R is not correct explanation of A. explanation of A. (C.) A is true but R is false. (d.) Both A and R are false. (12.) Assertion: Separation of Zr and Hf is difficult. **Reason:** Both have same chemical properties due to similar radius (a.) Both A and R are correct and R is correct (b.) Both A and R are correct but R is not correct explanation of A. explanation of A. (C.) A is true but R is false. (d.) Both A and R are false.
- (13.) The separation of lanthanides by ion exchange method is based on
- (a.) size of the ions

(a.) P-III,Q-I,R-IV,S-II

(C.) oxidation states of the ions

(d.) basicity of the hydroxides of lanthanides.

(14.) Which of the following ions show higher spin only magnetic moment value

(a.) Ti^{3+} & Mn^{2+}

- (b.) Mn^{2+} & Ti^{3+}
- (b.) the solubility of their nitrates

- (b.) P-III,Q-IV,R-I,S-II
- (d.) P-II,Q-III,R-IV,S-I

(c.) Mn^{2+} & Fe^{2+}	(d.) Co^{3+} & Mn^{2+}
(15.)Manganese exhibit its highest oxidation state (+7)	in its oxide not in its fluoride, why
(a.) Oxygen is less electronegative than fluorine.	(b.) Oxygen posses d -orbitals while fluorine does nor.
(C.) Fluorine stabilises lower oxidation state.	(d.) In covalent compounds fluorine can form single bond only while oxygen forms double bonds.
(16.) Which of the following factors is responsible for the	ne value of ionisation enthalpy.
(a.) Attraction of each electron towards nucleus	(b.) Repulsion between the electrons
(c.) Exchange energy	(d.) All of these
(17.)Transition elements show magnetic moment due following pairs have same magnetic moment?	to presence of unpaired electrons. Which of the
(a.) $Co^{2+}, Cr^{2+},$	(b.) Cr^{2+}, Mn^{2+}
(c.) Mn^{2+}, Cr^{3+}	(b.) Cr^{2+}, Mn^{2+} (d.) Co^{2+}, Cr^{3+}
(18.) When a mixture of NaCl and $K_2Cr_2O_7$ is gently w	varmed with contracted H_2SO_4 , then
 (I) Chlorine gas is evolved (II) Orange red vapours are evolved (III) The vapours when passed into NaOH solution give Which of the following is/are correct (a.) I only (c.) I & III 	 e a yellow solution of Na₂CrO₄ (b.) II & III (d.) All are correct
(19.)The reason for greater range of oxidation stare in a	ctinoids is attributed to
(a.) the radioactive nature of actinoids	(b.) actinoid contraction
(C.) 5f, 6d and 7s levels having comparable energies	(d.) 4f and 5d levels being close in energies.
(20.)General electronic configuration of lanthanoids is	
(a.) $(n-2)f^{1-14}(n-1)s^2p^6d^{0-1}ns^2$	(b.) $(n-2)f^{10-14}(n-1)d^{0-1}ns^2$
(c.) $(n-2)f^{0-14}(n-1)d^{10}ns^2$	(d.) $(n-2)d^{0-1}(n-1)f^{1-14}ns^2$
(21.)Assertion: Potassium dichromate is used as a prim Reason: Sodium and potassium dichromates are str	• •
(a.) Both A and R are correct and R is correct explanation of A.	(b.) Both A and R are correct but R is nor correct explanation of A.
(c.) A is true but R is false.	(d.) Both A and R are false.
(22.) Match the catalysts with the processes.	
	ion between iodide and persulphate ions
	31

	(ii) Cu ₂ Cl ₂	(Q) Vegetable oil to ghee
	(iii) Fe (III)	(R) Sandmeyer reaction
	(iv) Finely divided Fe	(S) Haber's process
	(
(a.)	(i)-Q, (ii)-P, (iii)-S, (iv)-R	(b.) (i)-P, (ii)-Q, (iii)-S, (iv)-R
(c.)	(i)-P, (ii)-R, (iii)-Q, (iv)-S	(d.) (i)-Q, (ii)-R, (iii)-P, (iv)-S
	Which of the following elements scompounds?	shows maximum number of different oxidation states in its
(a.)	Eu	(b.) La
(c.)	Gd	(d.) Am
(24.)	Which of the following are radioactive	?
(a.)	Tb & Pm	(b.) Pm & Pa
(c.)	Am & Tb	(d.) Pa & Am
(25.)	Which of the following is correct about	tt reaction of KMnO ₄ with oxalic acid?
(a.)	CO ₂ is formed as the product.	(b.) The decolourisaton of KMnO ₄ is slow in the beginning and become instantaneous after sometime.
(c.)	Mn^{2+} catalyses the reaction.	(d.) All of these
(26.)	The colour of KMnO ₄ is due to	
(a.)	$L \rightarrow M$ charge transfer	(b.) $\sigma \rightarrow \sigma^*$ transition
(c.)	$M \rightarrow L$ charge transfer	(d.) d-d transition.
(27.)	Actinoids are generally slightly affected	ed by HNO ₃ but HCl attacks almost all metals because
(a.)	HCl is stronger acid than HNO ₃	(b.) HNO_3 is stronger acid than HCl
(c.)	formation of protective oxide layer by	HNO ₃ (d.) formation of protective oxide layer by HCl.
 		permanganate ion involves
(a.)	Only II	(b.) II & III
(c.)	I & II	(d.) All of these
	The reason behind the same physical (5d – series) is	and chemical properties of zirconium (4d-series) and hafnium
(a.)	same number of valence electrons	(b.) same value of electrode potential
(c.)	almost similar atomic radius	(d.) same enthalpy of atomisation.

(30.) When neutral or faintly alkaline	KMnO ₄	is treated	with pot	assium iod	lide, iodide ic	on is converted into
X. X is						

- (a.) IO (b.) I₂
- (c.) IO₄ (d.) IO₃
- (31.) The electronic configuration of Eu (Atomic no. 63), Gd (Atomic no. 64) and Tb (Atomic no. 65) are
- (a.) [Xe] 4f⁷6s², [Xe]4f⁸6s² and [Xe]4f⁸5d¹6s²
 (c.) [Xe] 4f⁶5d¹6s², [Xe]4f⁷5d¹6s² and [Xe]4f⁸5d¹6s²

(b.) [Xe] 4f ${}^{6}5d^{1}6s^{2}$, [Xe] 4f ${}^{7}5d^{1}6s^{2}$ and [Xe] 4f ${}^{9}6s^{2}$ (d.) [Xe] 4f ${}^{7}6s^{2}$, [Xe] 4f ${}^{7}5d^{1}6s^{2}$ and [Xe] 4f ${}^{9}6s^{2}$

(32.) Which of the following is not correctly matched with $K_2Cr_2O_7$ reactions?

(a.) $I^- \rightarrow I_2$ (b.) $Sn^{2+} \rightarrow Sn^{3+}$ (c.) $H_2S \rightarrow S$ (d.) $Fe^{2+} \rightarrow \Gamma e^{3+}$

(33.) The magnetic moment of a divalent ion in aqueous solution if its atomic number is 27, is

(a.) 3.87 B.M.(b.) 5.90 B.M(c.) 4.89 B.M.(d.) 2.9 B.M.

(34.) March the following columns.

(P) Reagent oxidised Fe^{2+} to Fe^{3+}	(i) K_2MnO_4
(Q) Compound having dark purple crystal isostructure with $KClO_4$	(ii) KMnO ₄
(R) Green compound formed by fusing KOH with MnO_2	(iii) $K_2Cr_2O_7$
(S) Compound which has orange crystal tetrahedral structure acidified	(iv) KMnO ₄

(a.) $P(iv)$, $Q(ii)$, $R(i)$, $S(iii)$	(b.) P-(iii), Q-(ii), R-(i), S-(iv)
(c.) $P_{-}(iv)$, $Q_{-}(i)$, $R_{-}(ii)$, $S_{-}(iii)$	(d.) P-(iii), Q-(i), R-(ii), S-(iv)

(35.)Assertion: KMnO₄ is used for bleaching wool, cotton, silk and other textile fibres and for decolourisation of oils.
 Person: KMnO₄ is a strong oxidicing agent

Reason: KMnO₄ is a strong oxidising agent.

- (a.) Both A and R are correct and R is correct explanation of A.
- (b.) Both A and R are correct but R is not correct explanation of A.

- (C.) A is true but R is false.
- (36.) Which one of the following statements related to lanthanoids is incorrect?
- (a.) Europium shows +2 oxidation state.
- (C.) All the Lanthanons are much more reactive
- (d.) Both A and R are false.
- (b.) The basicity decrease as the ionic radius decreases from Pr to Lu.
- (d.) Ce(+4) solutions are widely used as oxidising

than aluminum.

agent in volumetric analysis.

- (37.) Among the following pairs of ions, the lower oxidation state in aqueous solution is more stable than the other, in (a.) Ti⁺, Ti³⁺ (b.) Cu^+, Cu^{2+} (d.) V^{2+}, VO^{2+} (c.) Cr^{2+}, Cr^{3+} (38.) Among Sc(III), Ti(IV), Pd(II) and Cu(II) ions (a.) all are paramagnetic (b.) all the diamagnetic (d.) Sc(III), Ti(IV) are diamagnetic and Pd(II) (C.) Sc(III), Ti(IV) are paramagnetic and Pd(II)and Cu(II) are diamagnetic and Cu (II) are paramagnetic. **(39.)** The reason for lanthanoid contraction is (a.) greater shielding of 4f - electrons (b.) poor shielding of 4f - electrons (C.) greater shielding of 5d - electrons (d.) poor shielding of 5d - electrons. (40.) Correct set of amphoteric oxides is (b.) CrO, V_2O_5 (a.) V_2O_5, Cr_2O_3 (C.) V_2O_4 , CrO₃ (d.) Mn_2O_7 , CrO_3 (41.) The composition of Mischmetal is (a.) Lanthanoid metals (b.) Lanthanoid metals (-95) + Fe(-5%) + S, C, Ca, Al(-90) + Fe(-9.5%) + S, C, Ca, Al(C.) Lanthanoid metals (90%) + Actinoids (d.) Lanthanoid metals (95%)+C (5%)+Fe, S,Al (5%) + C(5%)(42.) Which of the following reaction of KMNO₄ represent disproportionation
- (a.) $3MnO_4^{2-} + 4H^+ \rightarrow 2MnO_4^- + MnO_2 + 2H_2O$ (b.) $2KMnO_4 \rightarrow K_2MnO_4 + MnO_2 + O_2$ (c.) $2MnO_4^- + 3Mn^{2+} + 2H_2O \rightarrow 5MnO_2 + 4H^+$ (d.) All of these
- (43.) Which of the following actinoids have $6d^1$ in their electronic configuration
- (a.) U, Pa, Cm
 (b.) U, Th, Fm

 (c.) Th, Pa, Md
 (d.) Cm, Fm, No
- (44.) Stability of Fe^{3+} compounds is much more than stability of Fe^{2+} compounds. The correct reason form this is
- (a.) ionic radius of Fe^{3+} is smaller (b.) Fe^{3+} undergo disproportionauion
- (C.) Fe^{3+} has lower reduction potential (d.) Fe^{3+} has stable d^5 configuration.
- (45.) Assertion: 5f electrons are more effectively shielded from the nuclear charge than the 4f electrons of the corresponding lanthanoids.Reason: The outer electrons are less firmly held.

(a.) Both A and R are correct and R is correct explanation of A.

(C.) A is true but R is false.

- (46.) Which of the following elements will form MF₃ type compounds
- (a.) Cr & Ni (b.) Cr & Cu
- (C.) Co & Cu

(47.) Which of the following is not correctly matched for KMnO₄?

- (a.) In acidic medium, $I^- \rightarrow I_2$
- (C.) In acidic medium, $S^2 \rightarrow SO_4^{2-}$

(b.) In neutral medium, $S_2 O_3^{2-} \rightarrow SO_4^{2-}$ (d.) In neutral medium, $Mn^{2+} \rightarrow MnO_3$

- **(48.)** The correct reason for lanthanoid contraction is
- (a.) imperfect shielding effect of f -orbitals
- (C.) decreasing nuclear charge

- (b.) increasing nuclear charge
- (d.) decreasing in metallic radius.

(49.) Match the following.

Column I	Column II
(Compounds/elements)	(Use)
(P) Lanthanoid oxide	(I) Lighter flint
(Q) Mg based alloy	(II) Alloy steel
(R) Mixed oxides of lanthanoids	(III) Television screen
(S) Lanthanoids	(IV) Petroleum cracking

- (a.) P-III,Q-I, R-IV,S-II
- (c.) P-II,Q-IV, R-III,S-I

(50.) Which is not true about lanthanoids?

- (a.) All the lanthanoids are silvery white soft metals and tarnish rapidly in air.
- (C.) Lanthanides are separated from one another by ion exchange methods.
- (b.) P-III,Q-II, R-I,S-IV (d.) P-I,Q-III, R-II,S-IV
- (b.) All lanthanoids are highly dense metals.
- (d.) The hardness decreases with increasing atomic number, samarium being steel hard.

- (b.) Both A and R are correct but R is not correct explanation of A.
- (d.) Both A and R are false.

(d.) Cr & Co

TOPIC WISE PRACTICE QUESTIONS

TOPIC 1: Characteristics of d-Block Elements

14.	compounds?) Mn	4) W
14.	0		state of +o in any of its
14.		program ormanion	state of ± 0 in any of its
14.			
13.	1) Fe^{2+} , Ni^{2+} 2) Zr^{4+} , Ti^{4+} 3) Zr^{4+} . Hf $^{4+}$	4) Zn ²⁺ , Hf ⁴⁺
13.		j + 3, + 3, + 2, + 1	+) ++ III Cacil Case
	respectively 1) +5, +6, +2, +3 2) +3, +4, +5, +2 3) +5 +3 +7 +1	4) +4 in each case
12.		Cr (Z = 24), Co (Z)	= 27), Sc (Z = 21) are
	1) Mn^{+2} 2) Fe^{+2} 3) Ti^{+2}	4) Cr ⁺²	
11.	. Which of the following ions has the maximum magne	tic moment?	
	1) Sc 2) Ti 3) Zn	4) L	a
10.	• Which transition metal has lowest density?		
	1) Cr^{2+} 2) MnO_4^{2-} 3) MnO_4^{3-}	- 4)	Cu ⁺
9.	Which one of the following species is stable in aqueou	is solution ?	
) Mn^{2+}	
8.	Which of the following ions does not liberate hydroge		1
1.	1) Group 3 2) Group 11 3) Group		Froup 12
7.	Among the transition elements the element with lowe		elongs to
	Sc = 21, Fe = 26, Ti = 22, Mn = 25). 1) Sc ³⁺ 2) Fe ²⁺ 3) Ti ³⁺	4) Mn ²⁺	
6.	The aqueous solution containing which one of the foll $S_{2} = 21$ $E_{2} = 26$ Ti = 22 Mn = 25)	owing ions will be	e colourless? (Atomic number:
6	1) VCl ₂ 2) VCl ₄ 3) VCl ₃ The equation containing which are of the fell	4) V	
	has the formula:	41 11	
5.	Chloro compound of vanadium has only spin magnetic	c moment of 1.73	BM. This vanadium chloride
_		MnO ₂ or KMnO ₄	
	$1) Only MnO_2 2) Only I$		
4.	Which of the following is used in the preparation of cl		
	4) first decreases regularly till the middle of the period		
	3) first increases till the middle of the period and then		s the end.
	2) decreases gradually across the period from left to ri		
3.	1) increases gradually across the period from left to right		
3.	3) enthalpy of hydration of the metal ion 4 In general, the melting and boiling points of transition) all of these metals	
) ionisation energy	4
2.	The stability of particular oxidation state of a metal in	_	
	3) Variable oxidation states 4) Availability of vacant		
	1) Small atomic size2) High nuclear charge		
	Which of the following is not a condition for complex	formation?	
1.			

	1) their magnetic behaviour	· · · · · · · · · · · · · · · · · · ·	eir unfilled <i>d</i> -orbitals
	3) their ability to adopt variable oxidation s		eir chemical reactivity
18.	Which of the following has the maximum $1 \times T^{2}$		
10	1) Ti^{2+} 2) Fe^{2+}	3) Cr^+	4) Cu ⁺
19.	Which of the following species is/are param Fe^{2+} , Zn^0 , Hg^{2+} , Ti^{4+}	nagnetic?	
	1) Fe^{2+} only 2) Zn^0 and Ti^{4+}	3) Fe^{2+} and H	Hg^{2+} 4) Zn^0 and Hg^{2+}
20.	A compound of a metal ion M^{x+} (Z = 24) has		
-0.	The number of unpaired electrons in the co		moment of VIS Dom Mughetons.
	(a) 2 2) 4	3) 5	4) 3
	TOPIC 2: Compou	unds of Transit	ion Metals
21.	From a solution CuSO ₄ , the metal used to 1	recover copper is	
	1) Na 2) Ag	3) Hg	4) Fe
22.	Anhydrous cobalt (II) chloride is blue in co		in water it changes to pink in colour
	because :		
	1) Its oxidation state changes.	-)	0
22	3) Its coordination number changes.		
23.	Which of the following can be employed for permanganate?	or the conversion of por	tassium manganate to potassium
	1) O_3 2) Cl_2	3) Electrolysis	4) All
24.	In vapour state $Cu(NO_3)_2$ and $Cu_2(CH_3CC)$	•	1) 1
	1) Dimer, monomer	2) Monomer, dimer	
	3) Monomer, monomer	4) Dimer, Dimer	
25.	Which of the following is false ?		
	1) Molten lead and zinc are miscible. 2) Si		
26			er and gets solidified later than lead.
26.	Which of the following is used as purgative 1) ZnCl ₂ 2) HgCl ₂	$3) Hg_2Cl_2$	4) ZnSO ₄ . 7H ₂ O
27.	Mercury is the only metal which is liquid a		
	1) Very high ionisation energy and weakly		2) Low ionisation potential.
	3) High atomic weight.		4) High vapour pressure.
28.	Which compound is formed when iron read		
	1) FeC_2 2) Fe_3C	3) FeC ₃	4) Fe_2C
29.	The aqueous solution of transition metal sa	-	pink to blue, when concentrated
	hydrochloric acid is added to it. The chang1) evolution of hydrogen that changes the c		netal ion
	2) change in the coordination number of the		
	solution.		· · · · F
	3) formation of a coordination complex of	the metal ion with hydr	rochloric acid.
	4) protonation of the metal ion.		
30.	Choose the correct increasing order of the o	oxidation state of the ce	entral metal atom in the following
	x = x + x + x + x + x + x + x + x + x +		
	VO ₂ ⁺ , VO ²⁺ , TiO ²⁺ , CrO ₄ ²⁻	2	
	1) $VO^{2+} \Box VO_2^+ < TiO^{2+} < CrO_4^{2-}$	2) $VO^{2+} \Box TiO^{2+} < V$	
	3) $CrO_4^{2-} < TiO^{2+} < VO_2^+ < VO^{2+}$		2 1
31.	The oxoanion in which the oxidation state	of the central atom is sa	ame as its group number in the
	periodic table is: $1 > SO^2 = 2 > VO^2$	$\sim M_{\rm m} O^{2-}$	() $C_{\pi} O^{2-}$
	1) SO_4^{2-} 2) VO_2^{-}	3) MnO_{4}^{2-}	4) $\operatorname{Cr}_{2} \operatorname{O}_{7}^{2-}$
32.	The acidic, basic or amphoteric nature of N		
	1) acidic, acidic and basic	2) basic, amphoteric	
	3) acidic, amphoteric and basic	4) acidic, basic and a	ampnoteric

33.	When concentrated HCl is added to an aque to deep blue. Which complex ion gives blue	eous solution of CoCl ₂ , its colour changes from reddish pink
	1) $[CoCl_4]^{2-}$ 2) $[CoCl_6]^{3-}$	3) $[CoCl_6]^{4-}$ 4) $[Co(H_2O)_6]^{2+}$
34.		salts are placed separately in four different test tubes and a
	strip of copper is dipped in each one of thes	
	1) KNO ₃ 2) AgNO ₃	3) $Zn(NO_3)_2$ 4) $ZnSO_4$
35.	Which of the following oxides of Cr is amp	
	1) $Cr O_2$ 2) Cr_2O_3	$3) \operatorname{CrO}_5 \qquad \qquad 4) \operatorname{CrO}_3$
36.	Among the following, the compound that is	
37.	1) KMnO ₄ 2) CuF ₂ K ₂ Cr ₂ O ₇ on heating with aqueous NaOH g	3) $K_2Cr_2O_7$ 4) All are coloured
57.		
20	1) $\operatorname{CrO}_{4}^{2-}$ 2) $\operatorname{Cr}(\operatorname{OH})_{3}$	
38.	acid?	assium chromate is treated with an excess of dilute nitric
	1) $Cr O^{2-}$ and H O are formed	2) CrO^{2-} is reduced to +3 state of cr
	1) Cr O ^{2–} and H O are formed 3) CrO ^{2–} is oxidized to +7 state of Cr	4) Cr^{3+} and $Cr \Omega^{2-}$ are formed
39.		al product formed by the reaction between KI and acidified
	potassium dichromate solution is: $1 + 2$	$2) + \epsilon$ $A) + A$
40.	1) + 3 2) + 2 The final products formed on the addition of	3) + 6 $4) + 4$
TU.	1) K ₂ SO ₄ , CuI ₂ and I ₂ 2) K ₂ SO ₄ , Cu ₂ I ₂ and	
	1/100000000000000000000000000000000000	$d_{12} = 37 R_{2} S G_{4} and C d_{2} G_{4} = 7 R_{2} S G_{4}, C d G and R_{2}$
41.	KMnO ₄ (acidic/alkaline) is not decolourise	ed by
	1) mohr salt 2) oxalic acid	3) benzene 4) propene
42.		en Na ₂ SO ₃ is added to it. This is due to the formation of :
	1) $Cr_2(SO_4)_3$ 2) CrO^{2-4}_4	3) Cr (SO) 4) CrSO ₄
43.	KMnO ₄ can be prepared from K ₂ MnO ₄ as $3MnO_4^{2-} + 2HO_2 \square 2MnO_4^{2-} + MnO_2 + 4O$	per the reaction:
	The reaction can go to completion by remo 1) KOH 2) CO ₂	$\begin{array}{c} \text{SO}_2 \\ \text{SO}_2 \\$
44.	, , _	dised to permanganate ion in aqueous solution by
	1) hydrogen peroxide	2) conc. nitric acid
	3) peroxy disulphate	4) dichromate
45.	The starting material for the manufacture of	
	1) pyrolusite2) manganite	3) magnatite 4) haematite
46.	Match the columns	
	Column-I	Column -II
	1) Metal of the 3 <i>d</i> -series which does not form	(p) Manganese
	MO type oxide.	
	2) Metal of the 3 <i>d</i> -series	(q) Vanadium
	which forms most	
	covalent oxide.	
	3) Metal of the 3 <i>d</i> -series	(r) Scandium
	which forms the	
	amphoteric oxide.	
	1) $A - (p), B - (r), C - (q)$	2) A – (r), B – (p), C – (q)
17	3) $A - (r)$, $B - (q)$, $C - (p)$	4) $A - (q), B - (p), C - (r)$
47.	Which one of the following is an amphoteria (i) Mn ₂ O ₇ (ii) CrO (iii) V ₂ O ₄ (iv) Cr ₂ O ₃	ic oxide ?
	(1) Mn_2O_7 (11) CrO (111) V_2O_4 (1V) Cr_2O_3 (1) (i) and (ii) 2) (ii), (iii) and (iv)	3) (iii) and (iv) 4) (ii) and (iv)
	2/(1), (11) and (17) = 2/(11), (11) and (17)	(11) and (12) (11) and (12)

48.	Dichromate [Cr(VI)] is a stre	ong oxidizing a	agent where	eas Mo(VI) a	nd W(VI)	are found to be not. This is	
	due to 1) Lanthanoid contraction		2)	Down the g	oun metal	lic character increases	
	3) Down the group metallic c	haracter decre				ne character mercases	
49.	Which of the following conv		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	v_2O_4 and acidified	
	KMnO ₄ ?			•			
	(i) $Fe^{2+} \rightarrow Fe^{3+} + e^{-}$	(ii) I	$ \rightarrow $ (ii	i) $I^- \rightarrow I_2$	(i	v) $H_2S \rightarrow S$	
	1) (i) and (iii)	2) (ii) and (iv)) 3)	(i), (iii) and	(iv) 4)	(i), (ii) and (iii)	
50.	Which ion is not coloured?						
	1) Ni(DMG) ₂ 2) [Co	$(SCN)_4]^{2-}$	3) [Fe(H ₂	O) ₅ SCN] ²⁺	4)	$[Al(OH)_4]^-$	
	TOPIC	C 3: Lanth	anoids	and Act	<u>inoids</u>		
51.	The radius of La^{3+} (Z = 57) is	3 106 pm. Whie	ch one of th	e following	given valu	es will be closest to the	
	radius of Lu^{3+} (Z = 71)?						
50	· · · · · · · · · · · · · · · · · · ·	pm			4) 85 pm	1.0	
52.	Which of the following oxida 1) 3 2) 4	ition states is t				anoids?	
53.	1) 3 2) 4 What is the percentage of lan	thanoid metal	3) 2 in mischme		4) 5		
55.	1) 90% 2) 20%		3) 5%		4) 95%		
54.	Among the lanthanoids, the c		/		1) 2070		
	1) Lu 2) Pm	3) Pr		0.01			
55.	Which one of the following e	lements shows	maximum	number of d	ifferent ox	idation states in its	
	compounds?						
	1) Eu 2) La		3) Gd		4) Am		
56.	Which of the following facto			main cause of	of lanthanc	oid contraction?	
	1) Greater shielding of $5d$ ele						
	2) Poorer shielding of $5d$ electron			in the subsh	-11		
	3) Effective shielding of one4) Poor shielding of one of 4)				en		
57.	The heaviest atom amongst th			e Subshell			
57.	1) uranium 2) radi	-		4) merc	curv		
58.	Although $+ 3$ is the character					lso shows + 4 oxidation	
	state because						
	(i) it has variable ionisation enthalpy						
	(ii) it has a tendency to attain noble gas configuration						
	(iii) it has a tendency to attain f 0 configuration						
	(iv) it resembles Pb^{4+}					1 (***)	
50	1) (ii) and (iii) Which of the following out it	2) (i) and (iv)	· · · · · · · · · · · · · · · · · · ·	(ii) and (iv)	4) (1), (11)	and (111)	
59.	Which of the following exhit 1) U 2) Th	ont only $+ 3 \text{ oxi}$	3) Ac	ð ?	4)	Pa	
60.	Which of the following is the	use of mischr			4)	Га	
00.	1) In bullets 2) In lighter fl			petroleum cra	acking	4) Both 1) and 2)	
61.	The approximate percentage				acking	() Doth 1) and 2)	
	1) 10 2) 20	3) 50			4) 5		
62.	Gun metal is an alloy of	,			,		
	1) Cu and Al 2) Cu and Sn	3) Cu	Zn and Sn		4) Cu, Zn	and Ni	
63.	Brass is an alloy of						
	1) Zn and Sn 2) Zn and Cu	· · · · ·	Zn and Sn		4) Cu and	Sn	
64.	Which one of the following is		1?				
65	1) Zn 2) Cu Corium $(7 - 5^{\circ})$ is an import	3) Sn	lonthon: 1-		4) Pb.	na atatamanta aharri	
65.	Cerium ($Z = 58$) is an importance cerium is <i>not</i> correct?	ant member of	ranunanide	s. which of t		ng statements adout	
	1) The common oxidation states of Ce are $+ 3$ and $+ 4$.						
	1) The common oxidation sta		5 unu + 4 .				

	2) + 3 oxidation state is more stable than + 4 oxidation state.					
	3) + 4 oxidation state is not known in solution.					
	4) Ce (IV) acts as an oxidising agent.					
66.	Non-lanthanoid atom is					
C7	1) La 2) Lu 3) Pr 4) Pm					
67.	Which of the following lanthanoid ions is diamagnetic? (At rose $C_2 = 5^{\circ}$ Sin = $(2, V_1) = 70$)					
	(At nos. Ce = 58, Sm = 62, Eu = 63, Yb = 70) 1) Sm ²⁺ 2) Eu ²⁺ 3) Yb ²⁺ 4) Ce ²⁺					
68.	1) Sm^{2+} 2) Eu^{2+} 3) Yb^{2+} 4) Ce^{2+} Lanthanoid contraction can be observed in					
08.	$\begin{array}{ccc} 1) \text{ At} & 2) \text{ Gd} & 3) \text{ Ac} & 4) \text{ Lw} \end{array}$					
69.	The +3 ion of which one of the following has half filled 4f subshell?					
09.	1) La 2) Lu 3) Gd 4) Ac					
70.	Which one of the following statements concerning Lanthanoids elements is false?					
70.	1) Lanthanoids are separated from one another by ion exchange methods					
	2) The ionic radii of trivalent Lanthanoids steadily increase with increase in atomic number					
	3) All Lanthanoids are highly dense metals					
	4) Most typical oxidation of Lanthanoids is +3					
	1) Host of provident of Danishanioras is +5					
	NEET DEVICUS VEADS OUESTIONS					
	NEET PREVIOUS YEARS QUESTIONS					
1.	Which one of the following ions exhibits d-d transition and paramagnetism as well?	[2018]				
	1) $\operatorname{CrO}_{4}^{2-}$ 2) $\operatorname{CrO}_{2}^{2-}$ 3) $\operatorname{MnO}_{4}^{2-}$ 4) $\operatorname{MnO}_{4}^{-}$					
2)	Match the metal ions given in Column I with the spin magnetic moments of the ions given in Col	umn II				
2)	Match the metal ions given in Column I with the spin magnetic moments of the ions given in Column II and assign the correct code [2018]					
	and assign the correct code	[2010]				
	Column I Column II					
	$(A) \subset \mathcal{A}$					
	(A) Co^{3+} (i) $\sqrt{8}$ BM					
	(B) Cr^{3+} (i) $\sqrt{35}$ BM					
	(C) Fe^{3+} (iii) $\sqrt{3}$ BM					
	(D) Ni^{2+} (iv) $\sqrt{24}$ BM					
	(v) $\sqrt{15}$ BM					
	(A) (B) (C) (D)					
	(a) (iv) (v) (ii) (i) (b) (i) (ii) (iii) (iv)					
	(c) (iii) (v) (i) (ii)					
	(d) (iv) (i) (ii) (iii)					
3.	Name the gas that can readily decolourise acidified $KMnO_{\ell}$ solution :	[2017]				
5.	Name the gas that can readily decolourise acidified KMnO ₄ solution : 1) SO ₂ 2) NO ₂ 3) P_2O_5 4) CO ₂	[2017]				
4.		[2017]				
7.	1) HgI ₂ , Γ 2) HgI ²⁻ , Γ 3) Hg I ₂ , Γ 4) HgI ₂ , Γ					
	4 3 2 2 3					
5.		[2017]				
	1) Actinoid contraction. 2) $5f$, $6d$ and $7s$ levels having comparable energies.					
	3) $4f$ and $5d$ levels being close in energies. 4) The radioactive nature of actinoids.					
6.	Which one of the following statements is correct when SO_2 is passed through acidified $K_2Cr_2O_7$	1001 - 7				
1		[2016]				
1	1) The solution turns blue. 2) The solution is decolourized. 2) SQ is a dread 4) Crean Cr (SQ) is formed.					
1	3) SO ₂ is reduced. 4) Green $Cr_2(SO_4)_3$ is formed.					

7.	The electronic configurations of Eu(Atomic No	. 63), Gd (Atomi	c No. 64) and Tb					
	1) [Xe]4f ⁷ 6s ² , [Xe]4f ⁸ 6s ² and [Xe]4f ⁸ 5d ¹ 6s ² 3) [Xe]4f ⁶ 5d ¹ 6s ² , [Xe]4f ⁷ 5d ¹ 6s ² and [Xe]4f ⁸ 5d ¹	2) [Xe]4f ⁷ 56 6s ² 4) [Xe]4f ⁷ 68	$d^{1}6s^{2}$, [Xe]4 f^{7} 5 d^{1} s^{2} , [Xe]4 f^{7} 5 $d^{1}6s^{2}$ a	[2016] $6s^2$ and [Xe] $4f^96s^2$ and [Xe] $4f^96s^2$				
8.	Gadolinium belongs to 4f series. It's atomic num			is the correct				
	electronic configuration of gadolinium? 1) $[Xe]4f^{8}6d^{2}2$ $[Xe]4f^{9}5s^{1}$ 3) $[Xe]4f$	$r^{7}5d^{1}6s^{2}4)$ [Xe] 4	$4f^{6}5d^{2}6s^{2}$	[2015]				
9.	Which of the following processes does not invo			[2015]				
	1) Decolourization of blue CuSO ₄ solution by iron.							
	2) Formation of Fe(CO) ₅ from Fe.							
	3) Liberation of H₂ from steam by iron at high t4) Rusting of iron sheets.	lemperature.						
10.	Because of lanthanoid contraction, which of the	e following pairs	of elements have	nearly same atomic				
	radii ? (Numbers in the parenthesis are atomic r			[2015]				
11	1) Zr (40) and Nb (41) 2) Zr (40) and Hf		· · · ·	4) Ti (22) and Zr (40)				
11.	The reaction of aqueous KMnO ₄ with H_2O_2 in 1) Mn^{4+} and O_2 2) Mn^{2+} and O_2	3) Mn^{2+} and		[2014] 4) Mn ⁴⁺ and MnO ₂				
12.	Magnetic moment 2.83 BM is given by which o	/		[2014]				
	(At. nos. $Ti = 22$, $Cr = 24$, $Mn = 25$, $Ni = 28$):-	_						
	1) Ti^{3+} 2) Ni^{2+}	3) Cr ³⁺		4) Mn ²⁺				
13.	Reason of lanthanoid contraction is:-	2) In ana asim		[2014]				
	 Negligible screening effect of 'f' orbitals. Decreasing nuclear charge. 		g nuclear charge. ng screening effec	t				
14.	The manganate and permanganate ions are tetrah		ing sereening erree	[2019]				
	(1) The p.bonding involves overlap of p.orbitals of		orbitals of manga					
	(2) There is no p.bonding							
	(3) The p.bonding involves overlap of p.orbitals of(4) The p.bonding involves overlap of d.orbitals of							
	(4) The ploonding involves overlap of dioronals (or oxygen with d.	oronais or manga	liese				
15.	When neutral or faintly alkaline KMnO4 is treate 'X'. 'X' is-	ed with potassium	n iodide, iodide ior	n is converted into [2019-ODISSA]				
) IO ⁻	(4) IO ⁻	[2019-0D155A]				
16.	Identify the incorrect statement from the followin	3		[2020-Covid-19]				
10.	(1) Zirconium and Hafnium have identical radii o	0	9 pm, respectively					
	lanthanoid contraction.	1		1				
	(2) Lanthanoids reveal only +3 oxidation state.	(1 c14)	11					
	(3) The lanthanoidions other than the f0 type and(4) The overall decrease in atomic and ionic radii			ed				
	lanthanoidcontraction.		to futerium is can	cu				
17.	Match the following aspects with the respective r	netal.		[2020-Covid-19]				
	Aspects			Metal				
	(a) The metal which reveals a maximum number			(i) Scandium				
	 (b) The metal although placed in 3d block is considered not as a transition element (ii) Copper (c) The metal which does not exhibit variable oxidation states (d) The metal which in +1 oxidation state in aqueous solution undergoes (iv) Zinc 							
	disproportionation		C					
	Select the correct option :							
1	(1) (a)-(i) (b)-(iv) (c)-(ii) (d)-(iii) (2) (iii) (d)-(iii) (d)-(ii)		(b)-(iv) (c)-(i) (d)- b)-(iv) (c)-(i) (d)-(
	(3)(0)(111)(b)(1)(0)(137)(d)(14)			1111				
18	(3) (a)-(iii) (b)-(i) (c)-(iv) (d)-(ii) Urea reacts with water to form A which will deco							
18.	Urea reacts with water to form A which will deco	ompose to form B	B. B when passed t	hrough Cu ²⁺ (aq),				
18.	Urea reacts with water to form A which will deco deep blue colour solution C is formed. What is th	ompose to form B	B. B when passed t	hrough Cu ²⁺ (aq), ? . [2020]				

19.	Identify the incorrect statement 1) The oxidation states of chromium in CrO_4^2	and $Cr O^{2-}$ are not the same	[2020]				
	2) $Cr^{2+}(d^4)$ is a stronger reducing agent than						
	3) The transition metals and their compounds are known for their catalytic activity due to their ability						
	 adopt multiple oxidation states and to form complexes 4) Interstitial compounds are those that are formed when small atoms like H, C or N are trapped inside the crystal lattices of metals 						
20.	The incorrect statement among the following	is	[NEET-				
	2021]						
	1) Most of the trivalent Lanthanoid ions are colorless in the solid state						
	2) Lanthanoids are good conductors of heat and electricity						
	3) Actinoids are highly reactive metals, especially when finely divided						
	4) Actinoid contraction is greater for element to element than Lanthanoid contraction						
21.	Gadolinium has a low value of third ioni	zation enthalpy because of	[NEET-2022]				
	1) small size	2) high exchange enthalpy					
	3) high electronegativity	4) high basic character					
22.		, KMnO ₄ oxidises iodide into iodate. The	e change in				
	•						
	oxidation state of manganese in this reac	etion is from	[NEET-202				

1) +7 to +4 2) +6 to +4 3) +7 to +3 4) +6 to +5

NCERT LINE BY LINE QUESTIONS – ANSWERS									
	(1	.) a	(2.)	c	(3.) d	(4.)	a	(5.) b	
	(6	5.) a	(7.)	d	(8.) d	(9.)	d	(10.) b	
(11.) d		1.) d	(12.)	a	(13.) a	(14.)	c	(15.) d	
	(1	6.) d	(17.)	d	(18.) b	(19.)	с	(20.) a	
	(2	1.) b	(22.)	d	(23.) d	(24.)	d	(25.) d	
	(2	6.) a	(27.)	с	(28.) c	(29.)	с	(30.) d	
	(3	1.) d	(32.)	b	(33.) c	(34.)	a	(35.) a	
	(3	6.) c	(37.)	a	(38.) d	(39.)	b	(40.) a	
	(4	1.) b	(42.)	a	(43.) a	(44.)	d	(45.) a	
	(4	6.) d	(47.)	c	(48.) a	(49.)	a	(50.) d	
	-	TOPIC W	ISE PR	ACTICI		ONS - A	NSWER	S	
1) 3	2) 4	3) 3	4) 3	5) 1	6) 1	7) 4	8) 4	9) 2	10)1
11)1	12) 1	13) 3	14) 1	15) 3	16) 3	17) 3	18) 3	19) 1	20) 4
21)4	22) 3	23) 4	24) 2	25)4	26) 3	27) 1	28) 2	29) 2	30) 2
31)4	32) 3	33) 1	34) 2	35)1	36) 2	37) 1	38) 1	39) 1	40) 2
41) 3	42) 1	43) 2	44) 3	45) 1	46) 2	47) 3	48) 2	49) 3	50) 4
51)4	52) 1	53) 4	54) 2	55)4	56) 2	57) 1	58) 1	59) 3	60) 4
61)4	62) 3	63) 2	64) 2	65) 3	66) 1	67) 3	68) 2	69) 3	70) 2
		NEET P	REVIOU	S YEA	RS QUES	FIONS-A	NSWER	S	
1) 3	2) 1	3) 1	4) 2	5) 2	6) 4	7) 4	8) 3	9) 2	10) 2
11)2	12) 2	13) 1	14) 1	15) 3	16) 2	17) 2	18) 3	19) 1	20) 1
21) 2	22) 1								
NCERT LINE BY LINE QUESTIONS – SOLUTIONS									
(2.) (c) $(1 + 1) (2 $									

- $5Fe^{2+} + MnO_{4}^{-} + 8H^{+} \rightarrow Mn^{2+} + 4H_{2}O + 5Fe^{3+}$ $5S^{2-} + 2MnO_{4}^{-} + 16H^{+} \rightarrow 2Mn^{2+} + 8H_{2}O + 5S$ $5NO_{2}^{-} + 2MnO_{4}^{-} + 6H^{+} \rightarrow 2Mn^{2+} + 5NO_{3}^{-} + 3H_{2}O$
- (5.) (b) The elements of group 11 are still worthy of being called the coinage metals, although Ag and Au are restricted to collection items and the contemporary UK "copper" coins are copper coated steel. The 'silver' UK coins are a Cu / Ni alloy.
- (6.) (a) Promethium (Pm) is radioactive.

 $Eu^{2+} : [Xe]4f^{7}$

 Gd^{3+} : [Xe]4f⁷

$$La^{3+} : [Xe] 4f^{0}$$

(7.) (d) Due to involvement of d-electrons in metallic bonding copper has higher melting point.

(8.) (d) $6KCl + K_2Cr_2O_7 + 7H_2SO_4 \rightarrow 4K_2SO_4 + Cr_2(SO_4) + 3Cl_2 + 7H_2O_3$

- (9.) (d) All the given statements are correct.
- (10.) (b) The electronic configuration of Cu(II) is 3d⁹ whereas that of Cu(I) is 3d¹⁰ but Cu(II) is more stable than Cu(I).
- (11.) (d) The highest oxidation state of osmium is +8 and it is a 5d block element.
- **(12.)** (a)

(15.) (d) The ability of oxygen to stabilise the high oxidation state is due to the formation of multiple bonds to metals which fluorine cannot do. (d) All the three given terms are responsible for value of ionisation enthalpy. (16.) (d) Co^{2+} [**Ar**] $3d^7$ unpaired electrons 3 (17.) Cr^{2+} : [**Ar**] $3d^4$ unpaired electrons 4 Mn^{2+} : [Ar] $3d^5$ unpaired electrons 5 Cr^{3+} : [Ar]3d³ unpaired electrons 3 As Co^{2+} and Cr^{3+} have same number of unpaired electrons hence have same magnetic moment value. (b) $K_2Cr_2O_7 + 4NaCl + 6H_2SO_4 \rightarrow 2KHSO_4 + 4NaHSO_4 + 2CrO_2Cl_2 + 3H_2O_4$ (18.) Orange red vapour Chromyl chloride vapours when passed through NaOH solution gives a yellow solution of Na₂CrO₄. (19.) (c) There is a greater range of oxidation states, which is in part attributed to the fact that the 5f, 6d and 7s levels are of comparable energies. (a) General electronic configuration of lanthanoids is $(n-2)f^{1-14}(n-1)s^2p^6d^{0-1}ns^2$ (20.) (b) Both the given statements are correct. (21.) (22.) (d) (23.) (d) Am is an actinoid it shows more oxidation states than lanthanoids. (d) Reaction between $KMnO_4$ and oxalic acid is (25.) $2KMnO_4 + 5C_2H_2O_4 + 3H_2SO_4 \rightarrow K_2SO_4 + 2MnSO_4 + 10CO_2 + 8H_2O_2$ The reaction is slow in the starting but Mn^{2+} acts as an autocatalyst and speed up the reaction. (27.) (c) Hydrochloric acid attacks almost all metals but most are slightly affected by nitric acid owing to the formation of protective oxide layers. (c) Due to lanthanoid contraction the second and third d-series exhibit similar radii (Zr 160 pm, Hf (29.) 159 pm) and have very similar physical and chemical properties. (d) In neutral or faintly alkaline solutions, I^- is converted to IO (30.) $2MnO_{4^{-}} + H_2O + I^{-} \rightarrow 2MnO_4 + 2OH^{-} + IO_{3^{-}}$ (d) Eu(63): [Xe]4f⁷6s² (31.) $Gd(64): [Xe] 4f^7 5d^1 6s^2$ $Tb(65): [Xe] 4f^{9} 6s^{2}$ (32.) (b) Acidified potassium dichromate will oxidise iodides to iodine, sulphides to sulphur, iin (II) to tin (IV) and iron (II) salts to iron (III) (c) Electronic configuration of Fe(27) \rightarrow [Ar]3d⁶4s² (33.) Electronic configuration of $Fe^{2+} \rightarrow [Ar]3d^6$ Thus it has 4 unpaired electrons. Magnetic moment = $\sqrt{n(n+2)}$ $=\sqrt{4(4+2)}=\sqrt{24}=4.89$ B.M. (a) Acidified KMnO₄ changes $Fe^{2+}to Fe^{3+}$ (34.) Dark purple crystals: KMnO₄ Green compound formed by fusing KOH with MnO₂:K₂MnO₄ Orange crystals with tetrahedral structure: $K_2Cr_2O_7$ (35.) (a) KMnO₄ is a strong oxidising agent and its oxidising power is used for bleaching action. (36.) (c) The first few members are quite reactive just like calcium. However with increasing atomic number, their behaviour becomes similar to that of aluminum.

- (37.) (a) Ti^+ ions are more stable than Ti^{3+} and thus Ti^{3+} ions change to Ti^+ thereby acting as oxidising agents.
- (39.) (b) 4f electrons shield each other from the nuclear charge quite poorly because of the very diffused shapes of f orbitals.
- (40.) (a) Cr_2O_3 and V_2O_5 are amphoteric.
- (41.) (b) Mischmetal consists of a lanthanoid metal (-95%) and iron(-5%) and traces of S, C, Ca and Al.

(42.) (a)
$$\underset{4}{\overset{+6}{\text{MnO}_{4}^{2-}}} \rightarrow \underset{4}{\overset{+7}{\text{MnO}_{4}^{-}}} + \underset{2}{\overset{+4}{\text{MnO}_{2}^{-}}}$$

As in this reaction Mn get reduced and oxidised both. Thus, it is a disproportionation reaction.

(43.) (a) U(92) : [Rn]
$$5f^{3}6d^{1}7s^{2}$$

Pa (91) : [Rn] $5f 6d^{1}7s^{2}$

Cm(96): [Rn] $5f^76d^17s^2$ Th (90): [Rn] $6d^27s^2$

- (100) [KI] 00 78
- Fm (100) : [Rn] $5f^{12}7s^2$
- Md (101) : [Rn] $5f^{13}7s^2$

No(102): [Rn]
$$5f^{14}7s^2$$

- (44.) (d) $\operatorname{Fe}^{3+}(d^5)$ compounds are more stable than $\operatorname{Fe}^{2+}(d^6)$ due to extra stable half-filled electronic configuration.
- **(45.)** (a)

(47.) (c) In acidic medium $KMnO_4$ oxidises S^2 to S as:

 $5\mathrm{S}^{2-} + 2\mathrm{MnO_4^-} + 16\mathrm{H^+} \rightarrow 2\mathrm{Mn^{2+}} + 8\mathrm{H_2O} + 5\mathrm{S}$

- (48.) (a) The factor responsible for lanthanoid contraction is the imperfect shielding effect of f-orbitals. The shielding of one 4f electron by another is less than that of one d-electron by another and as nuclear charge increases along the series, there is fairly regular decrease (lanthanoid contraction) in size of entire 4fⁿ orbitals.
- (49.) (a) Lanthanoids are used for production of alloy steel. Mg -based alloy is used to produce bullets, shell and lighter flint. Mixed oxides of lanthanoids are employed as catalysts in petroleum cracking. Some individual Ln oxides are used as phosphors in television screens.
- (50.) (d) All the lanthanides are silvery white metals, and hardness increases with increasing atomic number, samarium being steel hard.

TOPIC WISE PRACTICE QUESTIONS - SOLUTIONS

- 1. 3) Tendency of an element to form complexes does not depend on whether the element shows variable O.S. or not.
- 2. 4) $M(s) \rightarrow M^{n+}(aq) + ne^{-1}$

This changes involve sublimation, ionisation and hydration.

- 3. 3) First increases till the middle of period and then decreases towards the end as the atomic no. increases more the no. of unpaired e–s, more will be the melting point. As unpaired d-orbitals electron pair up, the M.P decreases There is a very small energy difference between
- 4. 3) Both MnO_2 and $KMnO_4$ used for the preparation of chlorine by the action of Conc. HCl

 $MnO_2 + 4HCl \rightarrow MnCl_2 + 2H_2O + Cl_2$

 $2\text{KMnO}_4 + 16\text{HCl} \rightarrow 2\text{KCl} + 2\text{MnCl}_2 + 8\text{H}_2\text{O} + 5\text{Cl}_2$

Chlorine is not obtained by dil HCl $Ag_2S_2O_3 + H_2O \rightarrow Ag_2S + H_2SO_4$ Black ppt 1) $\mu = \sqrt{n(n+2)}$; $1.73 = \sqrt{n(n+2)}$ 5. On calculating the value of n we find n = 1; No. of unpaired electrons = 1; hence its configuration will be V(23) = $[Ar] 3d^3 4s^2$; V⁴⁺ = $[Ar] 3d^1 4s^0$ ∴ Its chloride has the formula VCl₄ 6. 1) $Sc^{3+} \rightarrow 3d^04s^0$ $Fe^{2+} \rightarrow 3d^6 4s^0$ $Ti^{3+} \rightarrow 3d^{1}4s^{0}$ $Mn^{2+} \rightarrow 3d^5 4s^0$ In Sc³⁺ there is no unpaired electron. So the aqueous solution of Sc³⁺ will be colourless. 7. 4) Hg belongs to group 12. 8. $E^0(V)$ 4) ions Ti²⁺ -0.37 Cr^{2+} -0.26 Mn^{2+} +1.57Negative value of E° means these metals liberate hydrogen from dilute acid. $(M^{2+} + 2H^+ - e^- \rightarrow M^{3+} + H_2)$ 2) In MnO_4^{2-} manganese is in +6 oxidation state which is having highest stability. 9. MnO_4^{2-} disproportionates in neutral or acidic solution. $3\mathrm{Mn}\overset{\mathrm{O}}{\mathrm{O}_{4}^{2-}} + 4\mathrm{H}^{+} \rightarrow 2\mathrm{Mn}\overset{\mathrm{O}}{\mathrm{O}_{4}^{2-}} + \mathrm{Mn}\overset{\mathrm{O}}{\mathrm{O}_{2}} + 2\mathrm{H}\overset{\mathrm{O}}{\mathrm{O}_{2}}$ 10. 1) 1) Mn²⁺ 11. 12. 1) 3) Due to lanthanide contraction, the size of Zr and Hf (atom and ions) become nearly similar. 13. 1) Ti = $[Ar] 3d^2 4s^2$; The highest oxidation state will be +4. 14. 15. (3) The melting points of the transition elements first rise to a maximum and then falls as the atomic number increases, manganese has abnormally low melting point. 16. 3) $E_{Cu^{2+}/Cu}^{o} = 0.34 V$ other three have – ve E_{R}^{o} $E_{Co^{2+}/Co}^{o} = -0.28 V$ $E^{o}_{Ni^{2+}/Ni} = -0.25V$ $E^{o}_{Fe^{2+}/Fe} = -0.44V$ 17. 3) The transition metals and their compounds are used as catalysts. Because of the variable oxidation states, they may form intermediate compounds with one of the reactants. These intermediates provide a new path with lower activation energy. $V_2O_5 + SO_2 \rightarrow V_2O_4 + SO_3$; $2V_2O_4 + O_2 \rightarrow 2V_2O_5$ 3) The outer electronic configuration of the given ions is as 18.

Ti²⁺ 1 Cu⁺ 1 1 1 1 1 19. 1) The outermost electronic configuration of Fe is $Fe = [Ar] 3d^6 4s^2$ $Fe^{2+} = [Ar] 3d^6 4s^0$ Since Fe²⁺ has 4 unpaired electrons it is paramagnetic in nature. $Zn = [Ar] 3d^{10} 4s^2 - no unpaired e^-;$ $Hg^{2+} = [Ar]4f^{14}5d^{10} - no unpaired e^{-1}$ $Ti^{4+} = [Ar] 3d^0 4s^0 - no unpaired e^-$ 4) Magetic moment $\mu = \sqrt{n(n+2)}$ where n = number of unpaired electrons $\sqrt{15} = \sqrt{n(n+1)}$ \therefore n = 3 20. 4) Fe can be used to recover Cu from CuSO4 solution. 21. (3) Co^{II} Cl₂ has a blue colour in tetrahedral geometry. It changes to pink in colour with the change in 22. coordination number to six. 23. (4)24. (2)25. (4) Actually zinc silver alloy gets solidified earlier than lead. (3) Hg_2Cl_2 is used as a purgative in medicine. 26. 27. (1) It is due to very high IE which results in weak metallic bonding. 28. (2) Interstitial compound Fe3C (cementite) is formed. 29. (2)2) $VO^{2+} \Box TiO^{2+} < VO_2^+ < CrO_4^{2-}$ 30. 4) $Cr_2O_7^{2-}$, oxidation state and group number is 6. 31. 32. 3) Mn_2O_7 is acidic, V_2O_5 is amphoteric acid and CrO is basic. 1) Aqueous solution of $CoCl_2$ contains $[Co(H_2O)_6]^{2+}$ which is pinkish in colour so option 4) is incorrect. 33. Reduction potential of $Co^{3+} \rightarrow Co^{2+}$ is high so option2) is incorrect. Co^{2+} does not oxidises easily to Co^{3+} . It is general case that symmetrical substituted octahedral complexes are less deeper in colour than tetrahedral complexes. So $[CoCl_4]^{2-}$ is deep blue in colour. 2) Cu + 2AgNO \rightarrow Cu (NO) + 2Ag.Cu²⁺ will give blue solution. Cu is below in ECS than K and Zn 34. hence no reaction will occur with them. 35. 1) CrO₂ is amphoteric in nature 36. 2) CuF₂ is both paramagnetic and coloured. 1) $Cr_2O_7^{2-} + 2OH^- \rightarrow 2CrO_4^{2-} + H_2O$ 37. 1) $2K_2CrO_4 + 2HNO_3 \rightarrow K_2Cr_2O_7 + 2KNO_3 + H_2O$ 1) $CrO_2^{2-} + 6I^- + 14H^+ \rightarrow 3I_2 + 7HO_2 + 2Cr^{3+}$ 38. 39. Oxidation state of Cr is +340. 2) $2CuSO_4 + 4KI \rightarrow 2K_2SO_4 + Cu_2I_2 + I_2$ 41. 3) Benzene does not decolourise KMnO4 (acidic/alkaline). It is due to the delocalization of p-electron in benzene. Mohr's salt and oxalic acid give redox reaction with KMnO4. Propene decolorises KMnO4 due to presence of C = C bond. 42. 1) The green colour appears due to the formation of

 Cr^{+++} ion, i.e., $Cr_2(SO_4)_3$ $Cr_2O_7^{2-} + 3SO_3^{2-} + 8H^+ \longrightarrow 3SO_4^{2-} + 2Cr^{3+} + 4H_2O$ 2) HCl and SO₂ are reducing agents and can reduce MnO_4^- .CO₂ which is neither oxidising and nor 43. reducing will provide only acidic medium. It can shift reaction in forward direction and reaction can go to completion. (3) In laboratory, manganese (II) ion salt is oxidised to permagnate ion in aqueous solution by 44. peroxodisulphate. 45. 1) Pyrolusite (It is MnO₂) 46. 2) 47. 3) Mn₂O₇ \rightarrow acidic ; CrO \rightarrow basic ; V₂O₄ \rightarrow amphoteric ; $Cr_2O_3 \rightarrow amphoteric$ 48. 2) Down the group metallic character increases hence tendency to loose electron increases. 49. 3) I^- is converted to IO^- by neutral or faintly alkaline MnO⁻ as shown below $2\mathrm{MnO}_{4}^{-} + \mathrm{H}_{2}\mathrm{O} + \mathrm{I}^{-} \rightarrow 2\mathrm{MnO}_{2} + 2\mathrm{OH}^{-} + \mathrm{IO}_{3}^{-}$ 50. 4) Al³⁺ has no unpaired d -electrons. 4) Since ionic radii decreases from La^{3+} to Lu^{3+} due to lanthanoid contraction, so La^{3+} have least ionic 51. radii out of the given radii. Hence answer is 85 pm. 52. 53. 4) 1) 2) Pm is obtained by synthetic method. 54. 4) We know that lanthanides La, Gd shows +3, oxidation state, while Eu shows oxidation state of +2 and 55. + 3. Am shows +3, +4, +5 and +6 oxidation states. Therefore Americium (Am) has maximum number of oxidation states. 56. 2) In lanthanides, there is poorer shielding of 5*d* electrons by 4*f* electrons resulting in greater attraction of the nucleus over 5d electrons and contraction of the atomic radii. 57. 1) 58. 1) 3) Ac(89) = $[Rn] [6d^1] [7s^2]$ 59. 4) 60. 4) Mischmetal is an alloy which contains rare earth elements (94-95%), iron (5%) and traces of sulphur, 61. carbon, silicon, calcium and aluminium. It is used in gas lighters, tracer bullets and shells. 62. (3) Gun metal is an alloy of Cu, Zn and Sn. It contains 88% Cu, 10% Sn and 2% Zn. 63. (2) Brass is an alloy of Cu and Zn (2) Cu, Ag and Au are called coinage metals. 64. 65. (3) (1) La (lanthanum) is non lanthanoid atom. 66. 67. 3) $Sm^{2+}(Z=62)$ [Xe]4f⁶ 6s² - 6 unpaired e⁻ $Eu^{2+}(Z=63)$ [Xe]4f⁷ 6s² – 7 unpaired e⁻ $Yb^{2+}(Z = 70)$ $[Xe]4f^{14} 6s^2 - 0$ unpaired e⁻ $Ce^{2+}(Z=58)$ $[Xe]4f^1 5d^1 6s^2 - 2$ unpaired e⁻ Only Yb²⁺ is diamagnetic. (2) Amongst the given elements, only Gd is a lanthanide. 68. 69. (3)70. (2) Ionic radii of trivalent lanthanoides decreases progressively with increase in atomic no. due to lanthanoides contraction.

NEET PREVIOUS YEARS QUESTIONS-EXPLANATIONS


1. 3)

Cr6+ diamagnetic CrO_4^2 Cr6+ diamagnetic $Cr_2O_7^{2-}$ Mn⁷⁺ diamagnetic MnO_4^- Mn⁶⁺ paramagnetic MnO_4^{2-} Thus unpaired electron is present, so *d*-*d* transition is possible. 1) $Co^{3+} = [Ar] 3d^6$, unpaired $e^{-}(n) = 4$ 2. Spin magnetic moment = $\sqrt{4(4+2)} = \sqrt{24}$ B.M $Cr^{3+} = [Ar] 3d^3$, unpaired $e^{-}(n) = 3$ Spin magnetic moment $=\sqrt{3(3+2)} = \sqrt{15}$ B.M $Fe^{3+} = [Ar] 3d^5$, unpaired $e^{-}(n) = 5$ Spin magnetic moment = $\sqrt{5(5+2)} = \sqrt{35}$ B.M $Ni^{2+} = [Ar] 3d^8$, unpaired $e^{-}(n) = 2$ Spin magnetic moment $\sqrt{2(2+2)} = \sqrt{8}$ B.M 1) Potassium permanganate has a purple colour. When sulphur dioxide reacts with potassium 3) permanganate the solution decolourizes. $5SO_2 + 2KMnO_4 + 2H_2O \rightarrow 2H_2SO_4 + 2MnSO_4 + K_2SO_4$ 2) In a solution containing HgCl₂, I_{2} and I^- , both HgCl₂ and I_2 compete for I^- Since formation constant of HgI₄, I_{2-}^2 is very large 4) (1.9×10^{30}) as compared with $I_3(K_f = 700)$ \therefore I⁻ will preferentially combine with HgCl₂ $HgCl_2 + 2I^- \rightarrow HgI_2 \downarrow + 2Cl^-$ Red ppt $HgI_2 + 2I^- \rightarrow [HgI_4]^{2-}$ so lub le 5. 2) Minimum or comparable energy gap between 5f, 6d and 7s subshell makes electron excitation easier, hence there is a greater range of oxidation states in actinoids. 4) $K_2Cr_2O_7 + SO_2 + H_2SO_4 \rightarrow K_2SO_4 + Cr_2(SO_4)_2 + H_2O_2$ 6. Green colour 7. 4) $Eu(63) = [Xe]4f^{7}6s^{2}$ $Gd(64) = [Xe]4f^{7} 5d^{1}6s^{2}$ $Tb(65) = [Xe]4f^{7} 5d^{1}6s^{2}$ 3) $Gd(64) = [Xe] 4f^7 5d^16s^2$ 8. 9. (2) Formation of Fe(CO)5 from Fe involves no change in oxidation state of iron. 10. (2) Due to lanthanoid contraction atomic radii of Zr and Hf is almost similar. 2) $2KMnO_4 + 3H_2SO_4 + 5H_2O_2 \rightarrow K_2SO_4 + 2MnSO_4 + 8H_2O + 5O_2$ i.e. Mn²⁺ ion and O₂ 11. 12. 2) Magnetic moment $\mu = \sqrt{n(n+2)}$; 2.83 = $\sqrt{n(n+2)}$; On solving n = 2Ni²⁺ have two unpaired electron.

13. 1) The shape of *f*-orbitals is very much diffused and they have poor shielding effect. The effective nuclear charge increases which causes the contraction in the size of electron charge cloud. This contraction in size is quite

regular and known as lanthanoid contraction.

14. 1) MnO_4^{-2} (Mangnate ion) and MnO_4^{-} (Permangnate ion) both are tetrahedral

Since ' π ' bond is formed between p-orbital of oxygen and d-orbital of Managnese

$$KMnO_4 + I^- + OH^- \longrightarrow MnO_2 + IO_3^- + H_2O$$

- 15. 3)
- 16. 2) Lanthanoids shows general oxidation state +3 butsome elements can shows +2 as well as +4.
- 17. 2) In the given options

The metal which reveals a maximum number of oxidation state \rightarrow Mn The metal although placed in 3d block is considered not as a transition element is \rightarrow Zn The metal which does not exhibit variable oxidation state is \rightarrow Sc (only +3) The metal which in +1 oxidation state in aqueous solution undergoes disproportionation is \rightarrow Cu $Cu^{2+} + 4NH \rightarrow \lfloor Cu(NH) \rfloor$

 $3 \qquad 3 \qquad 4 \end{bmatrix}$

19. 1)In both CrO_4^{2-} and CrO_2^{2-} oxidation state of chromium is +6

 $Cr^{2+} \rightarrow Cr^{3+}$ $Fe^{+2} \rightarrow Fe^{+3}$;

 $3d^4$ $3d^3$ $3d^6$ $3d^5$

 Cr^{3+} has more stable t_2g^3 configuration

20. 1)Actinoids are highly reactive metals, especially when finely divided
 Actinoid contraction is greater from element to element than lanthanoid contraction resulting from poor shielding by 5f electrons
 Many trivalent lanthanoids ions are coloured both in the solid state and in aqueous solutions. Lanthanoids have typical metallic structure and are good conductors of heat and electricity

21. By the loss of 3 electrons from $5d^1$ and $6s^2$, it gets stable half-filled $4f^7$ configuration

22. Faintly alkaline medium or neutral $KMnO_4 \rightarrow K_2MnO_4 \quad MnO_2$ +7 to +4