Ans: C) 1

PUC I YEAR MATHEMATICS (ANNUAL EXAM-2024) DEPUTY DIRECTOR, DEPARTMENT OF SCHOOL EDUCATION (PRE-UNIVERSITY)

ANNUAL EXAMINATION-2024

ANNUAL EXAMINATION – 2024 (SOLUTION)

PUC I YEAR KARNATAKA STATE LEVEL QUESTION PAPER

Time: 3 Hrs 15 Min	Subject : Mathematics (35)	Max Marks: 80
Instructions: (1) The question pap (2) Part-A has 15 m	per has five Parts namely A, B, C, D and altiple choice questions, 5 fill in the black	l E. Answer all the parts. nks questions
	PART-A	
I. Answer ALL the multiple cho	ice questions :	$(15 \times 1 = 15)$
1. The interval form of the	$\{x : x \in R, -4 < x \le 6\}$ set is	
A) [-4,6].		B) (-4,6]
C) $(-4,6)$		C) [-4,6)
2. If the set 'A' has 3 elem	ents and the set 'B' has 3 elements	then the number of elements in
$A \times B$ are		B) 6
C) 3		D) 27
Ans: A) 9		_)
3. The radian measure of 2	40 ⁰ is	
A) $\frac{\pi}{2}$		B) $\frac{3\pi}{4}$
$\frac{3}{\Gamma}$		D) $\frac{4\pi}{2}$
$\frac{1}{4}$		5
Ans: D) $\frac{4\pi}{3}$		
4. The simplest form of the	complex numer i^{-35} is	
A) i		B) <i>—i</i>
C) 1		D) -1
Ans: A) <i>i</i>		
5. The solution set of the in	euality $30x < 200$ when $x \in N$ is	
A) {1,2,3,4,5,6}		B) {0,1,2,3,4,5,6}
C) {1,2,3,4,5,6,7}		D) {, -2, -1,0,1,2, }
Ans: A) {1,2,3,4,5,6}		
6. If ${}^{n}C_{9} = {}^{n}C_{8}$ then ${}^{n}C_{17}$	is	
A) 17		B) 7
C) 1		D) 10

PUCI	YEAR MATHEMATICS	ANNUAL EXAMINATION-2024		
7.	In the expansion of $(a + b)^n$, the sum of the indices of 'a' and	'b' is		
	A) $n + 1$	B) 2 <i>n</i>		
	C) <i>n</i> – 1	D) <i>n</i>		
	Ans: The Question is incomplete			
	(Now, the question is like this, see below)			
	In each term of the expansion of $(a + b)^n$, the sum of the indic	ces of 'a' and 'b' is		
	A) $n + 1$	B) 2 <i>n</i>		
	C) $n - 1$	D) <i>n</i>		
	Ans: D) <i>n</i>			
8.	The 4 th term of the sequence defined by $a_n = \frac{n}{n+1}$ is			
	A) <u>5</u>	B) <u>4</u>		
		⁵		
	$C)\frac{4}{3}$	$D) = \frac{4}{4}$		
	Ans: B) $\frac{4}{5}$			
9.	Equation of a line parallel to x-axis and passing through the point $(-2, 3)$ is			
	A) $x = 3$	B) $x = -2$		
	C) y = 3	D) $y = -2$		
	Ans: C) $y = 3$			
10.	Equation of a circle with centre $(0,0)$ and radius 'r' units is	is		
	A) $(x - a)^2 + (y - b)^2 = r^2$	B) $x^2 + y^2 = 1$		
	C) $x^2 + y^2 = r^2$	D) $(x + a)^2 + (y + b)^2 = r^2$		
	Ans: C) $x^2 + y^2 = r^2$			
11.	The length of the Latus rectum of the hyperola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is			
	A) $\frac{2b}{2b}$	B) $\frac{2a}{2}$,		
	a^2	$b^{2}{}_{2}$		
	$C)\frac{a}{2b^2}$,	$D) \frac{-a}{a}$,		
	Ans: D) $\frac{2b^2}{2b}$			
	a			
12.	The Octant in which the points $(-4, 2, -5)$ lie	\mathbf{D}) \mathbf{W}		
	A) II, C) V			
	Ans: D) VI			
13.	The value of $\lim_{x \to 0} \frac{\cos x}{\pi - x}$ is			
	A) π	B) $\frac{1}{\pi}$		
	C) 0	D) limit does not exists		
	Ans: B) $\frac{1}{\pi}$			
14.	The mean value of the following data : 4.7.8.9.10.12.13.17 is			
1.0	A) 10	B) 9		
	C) 8	D) 12		
	Ans: A) 10			

ANNUAL EXAMINATION-2024

15. The probability of drawing a club card from a well shuffled deck of 52 cards is

1	•	8	
A) <u>1</u>			B) <u>1</u>
´ 13			52
C) <u>1</u>			D) <u>1</u>
<u> </u>			2
Ans: C) <u>1</u>			
4			

II. Fill in the blanks by choosing the appropriate answer from those give in brackets : $(5 \times 1 = 5)$

$$(42, -1, \sqrt{3}, 1, 0, 20)$$

16. If $(\frac{x}{3} + 1, y - \frac{2}{3}) = (\frac{5}{3}, \frac{1}{3})$ then the value of y is **Ans:** 1 **17.** The value of $sin(n\pi)$ is where $n \in Z$.

Ans: 0

18. The value of $\frac{7!}{5!}$ is

Ans: 42

19. The slope of the line making inclination of 60° with the positive direction of x-axis is

Ans: $\sqrt{3}$

20. The derivative of $x^2 - 2$ w.r.t x at x = 10 is Ans: 20

PART-B

Answer ANY SIX questions :

21. Let $V = \{a, e, i, o, u\}$ and $B = \{a, i, k, u\}$ Find V - B and B - VAns: $V - B = \{a, e, i, o, u\} - \{a, i, k, u\} = \{e, o\}$ $B - V = \{a, i, k, u\} - \{a, e, i, o, u\} = \{k\}$

22. Let $A = \{a, b\}, B = \{a, b, c\}$. Is $A \subset B$? What is $A \cup B$? Ans: Yes, $A \subset B$ Because, every element of A are the element of B $A \cup B = \{a, b, c\} = B$

23. Prove that
$$\sin^2 \frac{\pi}{6} + \cos^2 \frac{\pi}{3} - \tan^2 \frac{\pi}{4} = -\frac{1}{2}$$

Ans: LHS $= \sin^2 \frac{\pi}{6} + \cos^2 \frac{\pi}{3} - \tan^2 \frac{\pi}{4}$ w.k.t $\sin \frac{\pi}{6} = \frac{1}{2}$, $\cos \frac{\pi}{3} = \frac{1}{2}$, $\tan \frac{\pi}{4} = 1$,
 $= (\frac{1}{2})^2 + (\frac{1}{2})^2 - (\frac{1}{2})^2$
 $= \frac{1}{4} + \frac{1}{4} - 1$
 $= \frac{1+1-4}{\frac{4}{4}} = \frac{-2}{4}$
 $= -\frac{1}{2} = \text{RHS}$

24. Find the multiplicative inverse of the complex number $Z = \sqrt{5} + 3i$ Ans: Given Complex number is $Z = \sqrt{5} + 3i$

Modulus $|Z| = \sqrt{(\sqrt{5})^2 + (3)^2} = \sqrt{14}$ Conjugate $Z = \sqrt{5} - 3i$ Multiplicative inverse $Z^{-1} = \frac{\sqrt{5-3i}}{(\sqrt{14})^2} = \frac{\sqrt{5-3i}}{14}$ $(6\times 2=12)$

ANNUAL EXAMINATION-2024

3

L

25. Express
$$3(7 + i7) + i(7 + i7)$$
 in the form $a + ib$
Ans: $3(7 + i7) + i(7 + i7) = 21 + 21i + 7i + 7i^2$ $\therefore i^2 = -1$
 $= 21 + 21i + 7i - 7$
 $= 14 + 28i$

26. Solve $5x - 3 \ge 3x - 5$ and show the graph of solution on number line.

Ans:
$$5x - 3 \ge 3x - 5$$
 adding 3 on both side
 $5x - 3 + 3 \ge 3x - 5 + 3$
 $5x \ge 3x - 2$ subtracting 3x on both side
 $5x - 3x \ge 3x - 2 - 3x$
 $2x \ge -2$ dividing 2 on both side
 $\frac{2x}{2} \ge \frac{-2}{2}$
 $x \ge -1$
 $x \in [-1, \infty)$

27. How many 3-digit even numbers can be formed from the digits 1,2,3,4,6,7 if no digit is repeated?

Ans: Given digits are 1,2,3,4,6,7Total number of digits = 6 (There are 3 even numbers out of 6 numbers)To make 3 digit even numbers : $4 \ 5 \ 3$

Unit's place can be filled with 3 different ways Ten's place can be filled with 5 different ways Hundred's place can be filled with 4 different ways Total Number of 3 digit even numbers $= 4 \times 5 \times 3 = 60$

28. Using binomial theorem, evaluate (99)³

Ans:
$$(99)^3 = (100 - 1)^3$$
 comparing with $(a + b)^n$ we have $a = 100, b = -1$ and $n = 3$
 $= {}^{3}C_0(100)^3(-1)^0 + {}^{3}C_1(100)^2(-1)^1 + {}^{3}C_2(100)^1(-1)^2 + {}^{3}C_3(100)^0(-1)^3$
 $= 1(1000000) - 3(10000) + 3(100) - 1(1)$
 $= 1000000 - 30000 + 300 - 1$
 $= 970299$

29. Find the equation of the line intersecting the *x*-axis at a distance of 3 units to the left of origin with slope – 2.

Ans: The point on x-axis at a distance of 3 units to the left of origin is (-3,0) with slope -2By using point slope form $y - y_1 = m(x - x_1)$ where slope $(x_1, y_1) = (-3,0)$ and m = -2y - 0 = -2(x + 3)

$$y = -2x - 6$$
$$2x + y + 6 = 0$$

30. Evaluate :
$$\lim_{x \to 0} \frac{\sqrt{1+x-1}}{x}$$

Ans: put $1 + x = y$ if $x \to 0$ then $y \to 1$
Then $x = y - 1$
Now, $\lim_{x \to 0} \frac{\sqrt{1+x-1}}{x} = \lim_{y \to 1} \frac{\sqrt{y-1}}{y-1}$
 $= \lim_{y \to 1} \frac{y^{1/2} - 1^{1/2}}{y-1}$
 $= \frac{1}{2} 1^{1/2-1}$
 $= \frac{1}{2} (1^{-1/2}) = \frac{1}{2}$

Answer ANY SIX questions :

31. A die is thrown. Describe the following events: i) A: a number less than 4 ii) B: a number not less than 3 Ans : *S* = {1,2,3,4,5,6} *A* = {1,2,3} *B* = {3,4,5,6}

PART-C

 $(6 \times 3 = 18)$

32. Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}, A = \{2, 4, 6, 8\}$ and $B = \{2, 3, 5, 7\}$ verify that $(A \cup B)' = A' \cap B'$ **Ans:** A' = U - A $= \{1,2,3,4,5,6,7,8,9\} - \{2,4,6,8\}$ $= \{1,3,5,7,9\}$ B' = U - B $= \{1,2,3,4,5,6,7,8,9\} - \{2,3,5,7\}$ $= \{1, 4, 6, 8, 9\}$ $A \cup B = \{2,4,6,8\} \cup \{2,3,5,7\}$ $= \{2,3,4,5,6,7,8\}$ Now, $(A \cup B)' = U - (A \cup B)$ $= \{1,2,3,4,5,6,7,8,9\} - \{2,3,4,5,6,7,8\}$ $= \{1,9\}$ (1) Now, $A' \cap B' = \{1,3,5,7,9\} \cap \{1,4,6,8,9\}$ $= \{1,9\}$ (2) From (1) and (2), we have $(A \cup B)' = A' \cap B'$

33. Let $f(x) = x^2$ and g(x) = 2x + 1 be two real valued functions. Find (f + g)(x), (f - g)(x) and (fg)(x)

Ans: i)
$$(f + g)(x) = f(x) + g(x)$$

 $= (x^2) + (2x + 1)$
 $= x^2 + 2x + 1$
ii) $(f - g)(x) = f(x) - g(x)$
 $= (x^2) - (2x + 1)$
 $= x^2 - 2x - 1$
iii) $(fg)(x) = f(x) \cdot g(x)$
 $= (x^2) \cdot (2x + 1)$
 $= 2x^3 + x^2$

34. Prove that $sin 3x = 3sin x - 4sin^3 x$

Ans: $sin(x + y) = sinx \cdot cosy + cosx \cdot siny$ replacing y by 2x $sin(x + 2x) = sinx \cdot cos2x + cosx \cdot sin2x$ $sin3x = sinx(1 - 2sin^2x) + cosx(2sinxcosx)$ $sin3x = sinx - 2sin^3x + 2sinxcos^2x$ $sin3x = sinx - 2sin^3x + 2sinx(1 - sin^2x)$ $sin3x = sinx - 2sin^3x + 2sinx - 2sin^3x$ $sin3x = 3sinx - 4sin^3x$

35. If
$$x + iy = \frac{a+ib}{a-ib}$$
, prove that $x^2 + y^2 = 1$.
Ans: $x + iy = \frac{a+ib}{a-ib}$ (1)
Conjugate of eq(1) $x - iy = \frac{a-ib}{a+ib}$ (2)
Multiplying (1) and (2)
 $(x + iy) \cdot (x + iy) = (\frac{a+ib}{a-ib}) \cdot (\frac{a-ib}{a+ib})$

PUC I YEAR MATHEMATICS

$$x^{2} - i^{2}y^{2} = \frac{a^{2} - i^{2}b^{2}}{a^{2} - i^{2}b^{2}}$$
w.k.t $i^{2} = -1$

$$x^{2} + y^{2} = \frac{a^{2} + b^{2}}{a^{2} + b^{2}}$$

$$x^{2} + y^{2} = 1$$
OR Given Complex number

$$x + iy = \frac{a + ib}{a^{-ib}}$$

$$|x + iy| = \frac{|a + ib|}{|a - ib|}$$

$$\sqrt{x^{2} + y^{2}} = \frac{\sqrt{a^{2} + b^{2}}}{\sqrt{a^{2} + b^{2}}}$$

$$\sqrt{x^{2} + y^{2}} = 1$$

$$x^{2} + y^{2} = 1$$

36. If $tanx = -\frac{5}{12}$, x lies in second quadrant, find other five trigonometric functions **Ans:** $tanx = -\frac{3}{12}$

x lies in second quadrant

(In second Quadrant sinx and cosecx are positive remaining are negative)

$$sinx = \frac{5}{13}, cosecx = \frac{13}{5}, cosecx = -\frac{13}{5}, secx = -\frac{13}{12}, tanx = -\frac{5}{12}, cotx = -\frac{12}{5}$$

37. Find all pairs of consecutive odd natural numbers, both of which are larger than 10, such that their sum is less than 40.

Ans: Let first odd natural number = x, Let second odd natural number = x + 2Then the order pair is (x, x + 2)

both of which are larger than 10: x > 10 and x + 2 > 10

and their sum is less than 40

$$x + (x + 2) < 40 2x + 2 < 40 2x < 38 x < 19$$

Order pairs are (11,13), (13,15), (15,17), (17,19)

38. If A.M and G.M of two positive numbers 'a' and 'b' are 10 and 8, respectively. Find the numbers ~ 1 h

Ans:
$$A.M = \frac{a+b}{2} = 10$$
 and $G.M = \sqrt{ab} = 8$
 $a + b = 20,$ $ab = 64$
 $b = 20 - a,$ $a(20 - a) = 64$
 $20a - a^2 = 64$
 $a^2 - 20a + 64 = 0$
 $(a - 16)(a - 4) = 0$
 $a = 16$ or $a = 4$
If $a = 16$ then $b = 4$ and if $a = 4$ then $b = 16$
Therefore the numbers 'a' and 'b' are 16, 4 or 4, 16

ANNUAL EXAMINATION-2024

39. Derive the equation of line with x-intercept 'a' and y-intercept 'b' in the form of $\frac{x}{a} + \frac{y}{b} = 1$

Ans: The line meets x axis at A(a, 0) here a is x-intercept The line meets y axis at B(0, b) here b is y-intercept Equation of line passing through A(a, 0) and B(0, b)

$$y - y_{1} = \left(\frac{y_{2} - y_{1}}{b}\right) \left(x - x_{1}\right)$$

$$y - 0 = \left(\frac{b - 0}{0 - a}\right) \left(x - a\right)$$

$$y = -\frac{b}{a} \left(x - a\right)$$

$$ay = -b(x - a)$$

$$ay = -bx + ab$$

$$bx + ay = ab \text{ dividing } ab \text{ on both side}$$

$$\frac{bx}{ab} + \frac{ay}{ab} = \frac{ab}{ab}$$

$$\frac{x}{a} + \frac{y}{b} = 1$$

40. Find the equation of parabola whose vertex is (0, 0), passing through the point (2, 3) and axis is along x axis.

Ans: The parabola is symmetric about positive x axis because the point (2,3) lies in I Quadrant Therefore equation of parabola is $y^2 = 4ax$(1)

Eq (1) passing through (2,3) : (3)² = 4a(2)
9 = 8a

$$a = \frac{9}{8}$$

Then eq(1) becomes $y^2 = 4ax$
 $y^2 = 4(\frac{9}{8})x$
 $y^2 = \frac{9}{2}x$
 $2y^2 = 9x$

41. Show that the points *P*(−2, 3, 5), *Q*(1, 2, 3) and *R*(7, 0, −1) are collinear Ans: *P*(−2,3,5), *Q*(1,2,3) and *R*(7,0, −1)

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

Distance between P and Q
$$PQ = \sqrt{(1 + 2)^2 + (2 - 3)^2 + (3 - 5)^2}$$
$$= \sqrt{(3)^2 + (-1)^2 + (-2)^2}$$
$$= \sqrt{9 + 1 + 4}$$
$$= \sqrt{14} \text{ units(1)}$$

Distance between Q and R
$$QR = \sqrt{(7 - 1)^2 + (0 - 2)^2 + (-1 - 3)^2}$$
$$= \sqrt{(6)^2 + (-2)^2 + (-4)^2}$$
$$= \sqrt{36 + 4 + 16}$$
$$= \sqrt{56} = 2\sqrt{14} \text{ units(2)}$$

Distance between P and R
$$PR = \sqrt{(7 + 2)^2 + (0 - 3)^2 + (-1 - 5)^2}$$
$$= \sqrt{(9)^2 + (-3)^2 + (-6)^2}$$
$$= \sqrt{81 + 9 + 36}$$
$$= \sqrt{126} = 3\sqrt{14} \text{ units(3)}$$

From (1), (2) and (3) we have $PR = PQ + QR$

Therefore the given three points are collinear

42. Find the derivative of y = sinx with respect to x from first principle method

Ans:
$$y = sinx$$

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{\frac{f(x+h) - sinx}{h}}{h}, \text{ w.k.t the formula : } sinA + sinB = 2sin(\frac{A+B}{2})cos(\frac{A-B}{2})$$

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{2cos(\frac{(x+h) + x}{2})sin(\frac{(x+h) - x}{2})}{h}$$

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{2cos(x+\frac{2}{2})sin(\frac{2}{2})}{h}$$

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{cos(x+\frac{2}{2})sin(\frac{2}{2})}{\frac{h}{2}}$$

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{cos(x+\frac{2}{2})sin(\frac{2}{2})}{\frac{h}{2}}$$
w.k.t $\lim_{x \to 0} \frac{sinx}{x} = 1$

$$\frac{dy}{dx} = cos(x + \frac{9}{2}) \cdot 1$$

$$\frac{dy}{dx} = cosx \cdot 1$$

$$\frac{dy}{dx} (sinx) = cosx$$

PART-D

Answer any four questions :

 $(5 \times 4 = 20)$

43. Define modulus function. Draw the graph of it. Also its write domain and range Ans: Let R be the set of real numbers. The function $f: R \to R$ defined by $f(x) = |x| = \{ x, if x \ge 0 \\ -x, if x < 0 \}$, $\forall x \in R$ such function is called modulus function.

Domain = R Range = $R_+ \cup \{0\}$ or $[0, \infty)$

44. Prove that
$$\frac{\cos 4x + \cos 3x + \cos 2x}{\sin 4x + \sin 3x + \sin 2x} = \cot 3x$$

Ans: w.k.t the formula : $\cos A + \cos B = 2\cos \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)$
w.k.t the formula : $\sin A + \sin B = 2\sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)$
 $LHS = \frac{\cos 4x + \cos 3x + \cos 2x}{\sin 4x + \sin 3x + \sin 2x}$
 $= \frac{(\cos 4x + \cos 2x) + \cos 3x}{(\sin 4x + \sin 2x) + \sin 3x}$
 $= \frac{2\cos (\frac{4x+2x}{2}) \cos (\frac{4x-2x}{2}) + \cos 3x}{2\sin (\frac{4x+2x}{2}) \cos (\frac{4x-2x}{2}) + \sin 3x}$
 $= \frac{2\cos 3x \cos x + \cos 3x}{2\sin 3x \cos x + \sin 3x}$
 $= \frac{2\cos 3x (\cos x + 1)}{2\sin 3x (\cos x + 1)}$
 $= \frac{\cos 3x}{\sin 3x}$
 $= \cot 3x = RHS$

45. A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has : (i) no girl ? (iii) at least 3 girls ?

Ans : In a group selected members = 5 The number of girls = 4 The number of boys = 7 (i) no girl Number of ways = ${}^{4}C_{0} \times {}^{7}C_{5}$ $= \frac{4!}{4!0!} \times \frac{7!}{2!5!}$ $= \frac{4!}{4!0!} \times \frac{7\times6\times5!}{2\times1\times5!}$ $= \frac{7\times6}{2} = 21$ (i) at least 3 girls Number of ways = ${}^{4}C_{3} \times {}^{7}C_{2} + {}^{4}C_{4} \times {}^{7}C_{1}$ $= \frac{4!}{1!3!} \times \frac{7!}{5!2!} + \frac{4!}{0!4!} \times \frac{7!}{6!1!}$ $= \frac{4\times3!}{1\times3!} \times \frac{7\times6\times5!}{5!\times2\times1} + \frac{4!}{0!4!} \times \frac{7\times6!}{6!\times1}$ $= \frac{4}{1} \times \frac{7\times6}{2} + \frac{1}{1} \times \frac{7}{1}$ $= \frac{4}{1} \times \frac{7\times6}{2} + \frac{1}{1} \times \frac{7}{1}$ = 84 + 7 = 91

46. State and prove 'Binomial Theorem' for positive integral index 'n'

Ans: Statement: For all a,b real numbers and n is a positive integer then $(a + b)^n = {}^nC_0a^n + {}^nC_1a^{n-1}b + {}^nC_2a^{n-2}b^2 + \dots + {}^nC_nb^n$ Proof: By using Mathematical induction i) n = 1, P(1): LHS = $(a + b)^1 = a + b, RHS = {}^1C_0a^1 + {}^1C_1b^1 = a + b$ Therefore LHS=RHS, The result is true for P(1)ii) n = k, P(k): $(a + b)^k = {}^kC_0a^k + {}^kC_1a^{k-1}b + {}^kC_2a^{k-2}b^2 + \dots + {}^kC_kb^k \dots (1)$ The result is true for P(k)iii) n = k + 1, P(k + 1): $(a + b)^{k+1} = (a + b)^k(a + b)^1$ $= (a + b)^1(a + b)^k$ $= (a + b)({}^kC_0a^k + {}^kC_1a^{k-1}b + {}^kC_2a^{k-2}b^2 + \dots + {}^kC_kb^k)$

ANNUAL EXAMINATION-2024

$$= {}^{k}C_{0}a^{k+1} + {}^{k}C_{1}a^{k}b + {}^{k}C_{2}a^{k-1}b^{2} + \cdots + {}^{k}C_{k}ab^{k} + {}^{k}C_{0}a^{k}b + {}^{k}C_{1}a^{k-1}b^{2} + {}^{k}C_{2}a^{k-2}b^{3} + \cdots + {}^{k}C_{k}b^{k+1}$$

$$= {}^{k+1}C_{0}a^{k+1} + a^{k}b({}^{k}C_{1} + {}^{k}C_{0}) + a^{k-1}b^{2}({}^{k}C_{2} + {}^{k}C_{1}) + \cdots + {}^{k}C_{k}b^{k+1}$$

$$= {}^{k+1}C_{0}a^{k+1} + a^{k}b({}^{k+1}C_{1}) + a^{k-1}b^{2}({}^{k+1}C_{2}) + \cdots + {}^{k+1}C_{k+1}b^{k+1}$$

$$= {}^{k+1}C_{0}a^{k+1} + {}^{k+1}C_{1}a^{k}b + {}^{k+1}C_{2}a^{k-1}b^{2} + \cdots + {}^{k+1}C_{k+1}b^{k+1}$$

The result is true for P(k + 1), whenever P(k) is true Therefore P(n) is true for all natural numbers n Note: ${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$ ${}^{k}C_{1} + {}^{k}C_{0} = {}^{k+1}C_{1}$ ${}^{k}C_{2} + {}^{k}C_{1} = {}^{k+1}C_{2}$, and ${}^{k}C_{k} = {}^{k+1}C_{k+1} = 1$, ${}^{k}C_{0} = {}^{k+1}C_{0} = 1$

47. Prove that the length of the perpendicular from a point (x_1, y_1) to the line Ax + By + C = 0is $d = \frac{|Ax_1 + By_1 + C|}{\sqrt{A^2 + B^2}}$

Ans: The line Ax + By + C = 0 meets x axis at $Q(-\frac{C}{A}, 0)$ and y axis at $R(0, -\frac{C}{R})$ $P(x_1, y_1)$ is a point at distance of d units from Ax + By + C = 0In ΔPQR , we have Area of triangle formed by (x_1, y_1) , (x_2, y_2) and (x_3, y_3) Area of $\Delta PQR = \frac{1}{2} |x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)|$ Area of triangle formed by $P(x_1, y_1)$, $Q(-\frac{c}{A}, 0)$ and $R(0, -\frac{c}{B})$ Area of $\Delta PQR = \frac{1}{2} |x_1(0 + \frac{c}{B}) - \frac{c}{A}(-\frac{c}{B} - y_1) + 0(y_1 - 0)|$ Area of $\Delta PQR = \frac{1}{2} |\frac{cx_1}{B} + \frac{cy_1}{A} + \frac{c^2}{AB}|$ Area of $\Delta PQR = \frac{1}{2} \left| \frac{ACx_1 + BCy_1 + C^2}{AB} \right|$ $2(Area of \Delta PQR)$ $= \left| \frac{C}{AB} \right| |Ax_1 + By_1 + C| \dots (2)$ R(0, - =) $P(x_1, Y_1)$ Distance Between Q and R is $QR = \sqrt{\left(0 + \frac{c}{A}\right)^2 + \left(-\frac{c}{B} - 0\right)^2}$ M substitute eq(2) and eq(3) in eq(1) $PM = \frac{\frac{|C|}{AB} ||Ax_1 + By_1 + C|}{|C|} \\ d = \frac{|Ax_1 + By_1 + C|}{\sqrt{A^2 + B^2}}$

48. Prove geometrically that $\lim_{x\to 0} \frac{\sin x}{x} = 1$, where x being measured in radians

Ans: $\hat{A0B} = x$ (x being measured in radian) OA = OC radius of circle AB and CD are perpendicular to OA then join AC We get, $\frac{1}{2}Area \ of \ \Delta AOC < \frac{1}{2}Area \ of \ Sector \ AOC < \frac{1}{2}Area \ of \ \Delta AOB$ $\frac{1}{2}(OA)(CD) < \frac{1}{2}(OA)^2x < \frac{1}{2}(OA)(AB)$ (CD) < (OA)x < (AB).....(1) $In \Delta DOC \\
 sinx = \frac{CD}{OC}$ In $\triangle AOB$ $tanx = \frac{AB}{OA}$ CD = (OC)sinxAB = (OA)tanxThen equation (1) Becomes B (OC)sinx < (OA)x < (OA)tanx(OA)sinx < (OA)x < (OA)tanxsinx < x < tanxdividing sinx $\frac{\sin x}{\sin x} < \frac{x}{\sin x} < \frac{\tan x}{\sin x}$ $1 < \frac{x^{SIRX}}{sinx} < \frac{sinx}{cosx} \cdot \frac{1}{sinx}$ $1 < \frac{x}{sinx} < \frac{1}{sinx}$ taking reciprocal $1 > \frac{x^{SIRX}}{sinx} > cosx$ apply limit as $x \to 0$ $1 = 1 + \frac{x^{SIRX}}{sinx} = \frac{sinx}{sinx}$ $1 > \underbrace{1}_{x} > \underbrace{\lim_{x \to 0} \frac{\sin x}{x}}_{x \to 0} > \underbrace{\lim_{x \to 0} \frac{\sin x}{x}}_{x \to 0} > \underbrace{\lim_{x \to 0} \frac{\sin x}{x}}_{x \to 0} > \cos(0)$ $1 > \underbrace{\lim_{x \to 0} \frac{\sin x}{x}}_{x \to 0} > 1$ Therefore $\underbrace{\lim_{x \to 0} \frac{\sin x}{x}}_{x \to 0} = 1$

49. Find the mean deviation about mean for the following data

Xi	5	10	15	20	25
fi	7	4	6	3	5

Ans: fi fixi $|x_i - \overline{x}|$ $f_i |x_i - \overline{x}|$ χ_i 5 7 35 9 63 4 40 4 10 16 6 90 1 15 6 3 20 60 6 18 25 5 125 11 55 $\sum f_i |x_i - \overline{x}| = 158$ $N = \sum f_i = 25$ $\sum f_i x_i = 350$

$$N = \sum f_i = 25$$

Now $\mathbf{x} = \frac{1}{N} \sum f_i x_i$
 $= \frac{1}{25} (350)$
 $= 14$
Now $MD(\mathbf{x}) = \frac{1}{N} \sum f_i \mathbf{x}_i - \mathbf{x}$
 $= \frac{1}{25} (158)$
 $= 6.25$

-

ANNUAL EXAMINATION-2024

50. A bag contains 9 discs of which 4 are red, 3 are blue and 2 are yellow. The discs are similar in shape and size. A disc is drawn at random from the bag. Calculate the probability that it will be (i) red, (ii) yellow, (iii) blue, (iv) not blue

Ans: Total discs = 9 R = Red discs = 4 B = Blue discs = 3 Y = Yellow discs = 2 $P(R) = \frac{4}{9}$ $P(Y) = \frac{2}{9}$ $P(B) = \frac{3}{9} = \frac{1}{3}$ $P(B') = 1 - P(B') = 1 - \frac{1}{3} = \frac{2}{3}$

PART-E

Answer the following questions :

51. Prove geometrically that $cos(x + y) = cosx \cdot cosy - sinx \cdot siny$ (6M) **Ans:** $P_1 \hat{0} P_4 = x$ $\hat{P_1 P_2} = v$ P (cosz, sinx) $P_2 \hat{0} P_4 = x + y$ $\hat{P_{3}}P_{4} = -v$ Coordinates of points P_1 , P_2 , P_3 and P_4 P4(1.0) $P_1(cosx, sinx)$ $P_2(cos(x+y), sin(x+y))$ $P_3(cos(-y), sin(-y))$ $P_4(1,0)$ P (cos &+y) stn &+x) Distance between two points (x_1, y_1) and (x_2, y_2) P (cos (7), costa $d = \sqrt{(x_2 - x_1)^2 + (v_2 - v_1)^2}$ Distance between P_1P_3 $P P = \sqrt{\frac{2}{\cos x - \cos -y} + (\sin x - \sin - y)}^2$ squaring on both side $(P_1P_3)^2 = (cosx - cosy)^2 + (sinx + siny)^2$ $cos(-\theta) = cos\theta$, $sin(-\theta) = -sin\theta$ $(P_1P_3)^2 = \cos^2 x + \cos^2 y - 2\cos x \cdot \cos y + \sin^2 x + \sin^2 y + 2\sin x \cdot \sin y$ $(P_1P_3)^2 = (\cos^2 x + \sin^2 x) + (\cos^2 y + \sin^2 y) - 2[\cos x \cdot \cos y - \sin x \cdot \sin y]$ $(P_1P_3)^2 = 1 + 1 - 2[\cos x \cdot \cos y - \sin x \cdot \sin y]$ Distance between P_2P_4 $P_2P_4 = \sqrt{(\cos(x + y) - 1)^2 + (\sin(x + y) - 0)^2}$ squaring on both side $(P_2P_4)^2 = (cos(x + y) - 1)^2 + sin^2(x + y)$ $(P_2P_4)^2 = \cos^2(x+y) + 1 - 2\cos(x+y) + \sin^2(x+y)$ $(P_2P_4)^2 = (\cos^2(x+y) + \sin^2(x+y)) + 1 - 2\cos(x+y)$ $(P_2P_4)^2 = 1 + 1 - 2\cos(x + y)$ $(P_2P_4)^2 = 2 - 2\cos(x + y)....(2)$ Now $\Delta P_1 O P_3 \cong \Delta P_2 O P_4$ (Congruent Triangle) Corresponding sides and corresponding angles are equal Therefore $P_2P_4 = P_1P_3$ squaring on both side $(P_2P_4)^2 = (P_1P_3)^2$ from (1) and (2) $2 - 2\cos(x + y) = 2 - 2[\cos x \cdot \cos y - \sin x \cdot \sin y]$ $cos(x + y) = cosx \cdot cosy - sinx \cdot siny$

Derive equation of ellipse in the standard form $\frac{x^2}{x^2} + \frac{y^2}{x^2} = 1$

ANNUAL EXAMINATION-2024 (6M)

ANNUAL EXAMINATION-2024

(4M)

52. Find the sum of 'n' terms of sequence : 8, 88, 888, ... Ans: $S_n = 8 + 88 + 888 + 8888 + \cdots$ $S_n = 8[1 + 11 + 111 + 1111 + \cdots]$ $S_n = \frac{1}{9} \times 9 + 11 + 111 + 1111 + \cdots]$ $S_n = \frac{1}{9}[9 + 99 + 999 + 9999 + \cdots]$ $S_n = \frac{1}{9}[(10 - 1) + (100 - 1) + (1000 - 1) + (10000 - 1) + \cdots]$ $S_n = \frac{1}{9}[(10 + 100 + 1000 + 10000 + \cdots) - (1 + 1 + 1 + 1 + \cdots)]$ $S_n = \frac{1}{9}[(10^1 + 10^2 + 10^3 + 10^4 + \cdots) - (1 + 1 + 1 + 1 + \cdots)]$ $S_n = \frac{1}{9}[\frac{10(10^n - 1)}{10 - 1} - n]$ $S_n = \frac{1}{9}[\frac{10(10^n - 1)}{9} - n]$

OR

ANNUAL EXAMINATION-2024

AS PER NEW PATTERN 2023-2024 <u>TOP SCORER POCKET MARKS PACKAGE</u> FEATURES OF THE BOOK PUC II YEAR MATHEMATICS

- Blue print of the Question Paper and Question Paper Pattern
- Chapter wise detailed solutions of

Multiple Choice Questions (MCQ)

• Chapter wise detailed solutions of

Fill in the Blanks (FB)

• Chapter wise Question Papers (Test Papers)

```
    For FIRST UNIT TEST and SECOND UNIT TEST
    PROJECTS/ACTIVITY/ASSIGNEMENT
```

- Passing Package and Scoring Package
- Different Set of Question Papers (Prepared by experts)
 - > 10 Set of SAMPLE QUESTION PAPER
 - > 10 Set of PRACTICE QUESTION PAPER
- Chapter wise detailed solutions of All the Previous
 - Annual Examination/ Supplementary Examination/
 - Preparatory Examination/ Expected questions
- CET Question Paper Analysis
 - Chapter wise weightage
 - > Year wise analysis
 - ➢ How to score more in CET

SPECIAL NOTE :

For Annual Examination, the most possible Questions are there in this **TOP SCORER POCKET MARKS PACKAGE** book. If you practice all the questions from this Booklet, you will get **100/100 marks** in Annual examination for sure. (Included theory and project/activity/assignment)

KABBUR PUBLICATIONS, SAVADATTI If you want to score more, refer this book. Contact: 9738237960

PUCIYEAR MATHEMATICS ANNUAL EXAMINATION-2024 <u>AS PER NEW PATTERN 2023-2024</u>

In this booklet, <u>TOP SCORER POCKET MARKS PACKAGE</u>

QUESTION PAPERS	NOTATION	TOTAL
MODEL QUESTION PAPERS	MQP-01, MQP-02, MQP-03, MQP-04, MQP-05, MQP-06, MQP-07, MQP-08	8
ANNUAL EXAM QUESTION PAPERS	MARCH-2014, MARCH-2015, MARCH-2016, MARCH-2017, MARCH-2018, MARCH-2019 MARCH-2020, AUGUST-2021, MARCH-2022 MARCH-2023	10
SUPPLEMENTARY QUESTION PAPERS	JUNE-2014, JUNE-2015, JUNE-2016, JUNE-2017, JUNE-2018, JUNE-2019 JUNE-2020, SEPTEMBER-2022, JUNE-2023, AUGUST-2023	10
STATE LEVEL PREPARATORY QUESTION PAPERS	PQP-01, PQP-02, PQP-03, PQP-04, PQP-05, PQP-06, PQP-07, PQP-08, PQP-09, PQP-10,	10
DISTRICT LEVEL PREPARATORY QUESTION PAPERS	D-PQP-1, D-PQP-2, D-PQP-3, D-PQP-4 D-PQP-5,	30
LATEST MODEL QUESTION PAPERS	2019MQP-1, 2019MQP-2, 2019MQP-3 2021MQP-1, 2021MQP-2, 2022MQP-1, 2023MQP-2 2024MQP-1	8
PRACTICE QUESTION PAPERS PREPARED BY EXPERTS BASED ON NEW PATTERN 2023-2024	EPQP-01, EPQP-02, EPQP-03, EPQP-04, EPQP-05, EPQP-06, EPQP-07, EPQP-08 EPQP-09, EPQP-10	10
SAMPLE QUESTION PAPERS PREPARED BY EXPERTS BASED ON NEW PATTERN 2023-2024	SQP-01, SQP-02, SQP-03, SQP-04, SQP-05, SQP-06, SQP-07, SQP-08, SQP-09, SQP-10,	10
MOST LIKELY EXPECTED QUESTIONS WITH ANSWERS PREPARED BY EXPARTS		25
TOTAL QUESTION PAPERS WITH CHAPTERWISE SOLUTION		131

