DIRECTORATE OF EDUCATION, GNCT OF DELHI

SUGGESTIVE ANSWERS: Term-II (2021-22) CLASS-XI

SUBJECT: CHEMISTRY (043) TIME: 2 Hrs. **MM: 35** 1. i) a) H-bonding b) London force or Dispersion force (1/2x2)ii) $V_{-273} = V_{0+} - 273 \times V_{0} = 0$ (1) 273 2. i) Definition (1) ii) –ve (1) 3. i) O_2 ion have one unpaired e in π^{x}_{2p} orbital (1) ii) because of its high reactivity towards air and water. (1) 4. a) $n_{CH_4} = \frac{3.2}{16} = 0.2$ (1) Total moles = 0.2 + 0.1 = 0.3 moles $P = n_T RT = 0.3 \times 0.0831 \times 300 = 0.831 \text{ bar}$ (1) b) z=1(1) Or a) PV =nRT (1) P = nRT = mass xRT = dRT $V \times M$ $d = MP = > d \alpha M$ (1)

$$V \qquad V \times M \qquad M$$

$$d = MP \implies d \alpha M$$

$$RT$$
(1

 $(1/2 \times 2=1)$

b) H, He

5. i) a)
$$CH_3COCI$$
 Anh. FeCl₃ $COCH_3$ (1)

b)
$$CH \equiv CH Na CH \equiv C^{-}Na^{+} CH_{3}CH_{2}CI CH \equiv C-CH_{2}-CH_{3}$$
 (1)

ii
$$A = CH_3 - CH_2 - C = C - CH_3$$
 (1) $CH_3 - CH_3$

A=
$$CH_3 - CH_2 - CH - CH_3$$
 (1x3=3)
Br

$$B = CH_3 - CH = CH - CH_3$$

$$C= CH_3 - CH_2 - CH = CH_2$$

- 6. i) Due to inert pair effect
 - ii)Al become passive with conc. HNO₃ due to formation of protective layer. (1x3=3)
 - iii) Due to large size p- orbitals which do not cause effective overlapping.
- 7. i) Any two differences. (1x2=2)
 - ii) due to non-availability of d- orbitals can't extend its covalency beyond four. (1)

8. i)
$$CH_3$$
- CH_2 - CH_2 Br ii) iii) NO_2 (1x3=3)

9. i) Any four anomalous properties

ii) Na +
$$(x+y)NH_3$$
 \longrightarrow Na⁺ $(NH_3)_x$ + e⁻ $(NH_3)_y$

Or

- i) Due to small size of Be^{+2} its lattice energy with large size SO_4^{2-} in $BeSO_4$ is not very high and is soluble in water. Ba^{+2} being large sized, have high lattice energy large sized SO_4^{2-} in $BaSO_4$ and is insoluble in water. (2)
- ii) Rb< K< Na< Li (1)

b)
$$CH_3 - CH_2 - CI + 2 Na + CI-CH_2 - CH_3$$
 D.E. $CH_3 - CH_2 - CH_2 - CH_3 + 2NaCl$ (1)

or any another example

c)
$$\downarrow$$
 + CH₃Cl Anh. FeCl₂ +HCl (1)

11. a) Target equation

$$6C_{(gr)} + 3 H_{2(g)} \longrightarrow C_6 H_{6(I)} \Delta H = ?$$

 $On(i) \times 6 + (ii) \times 3 - (III)$

We get $6 \times (-393.3) + 3 \times (-286.6) - (-3267.7) = 48.1 \text{ KJ}$

b- Definition

Or

a) For spontaneous process $\Delta G < 0$ (2)

- $\Rightarrow \Delta H T\Delta S < 0$
- ⇒ 400- T x 0.2< 0
- ⇒ 400 < T x 0.2
- $\Rightarrow T > \underline{400} = 2000k$ 0.2
 - b) 1) $\Delta n_2 = 0$ 2) $\Delta U = 0$
- 12 i) H⁺ produced by acid combines with CH₃ COO in solution.

ii) Definition

$$K_w = 1x \ 10^{-14}$$
 at 298 k

- iii) By mixing equal moles of weak base and its salt with strong acid
- iv) NaOH → Na⁺ + OH⁻

 $[OH^{-}] = 10^{-3} M$

$$(H^{+}) = \frac{10^{-14}}{10^{-3}} = 10^{-11} M$$

pH = - log [H⁺] = - log 10⁻¹¹ = 11

0r

$$[H^{\dagger}] = C \alpha = C \sqrt{\frac{Ka}{C}}$$

 $[H^{\dagger}] = \sqrt{Ka. C}$

Putting the values we get $[H^{\dagger}] = 1 \times 10^{-3} M$

$$pH = -log [H^+]$$

= - log 10 -3
 $pH = 3$