

	NCERT LINE BY		
(1.)	In hydrogen-oxygen fuel cell, combustion of	-	-
(a.)	Produce high purity water	(b.)	Create potential difference between two electrodes
(c.)	generate hear	(d.)	remove adsorbed oxygen from electrode surface
(2.)	Fluorine is a best oxidising agent because it h	nas	
(a.)	highest electron affinity	(b.)	highest E° _{red}
(c.)	highest E ^o _{oxid}	(d.)	lowest electron affinity
(3.)	(180.) E^{o} for the half cell Zn^{2+}/Zn is -0.76 er $Zn/Zn^{2+}(1M) \parallel 2H^{+}(1M) \mid H_{2}(1 \text{ atm})$ is	mf of t	he cell
(a.)	-0.76V		
(b.)	+0.76		
(c.)	-0.38V		
(d.)	+0.38V		
(4.)	The electrolyte used in Leclanche cell		
(a.)	Paste of KOH and ZnO	(b.)	38% solution of H_2SO_4
(c.)	Moist paste of NH ₄ Cl and ZnCl ₂	(d.)	Moist NaOH
(5.)	Assertion: $E_{Ag^{+}/Ag}$ increases with increase in	concer	α α^+ ions
(0)	Reason: $E_{Ag^{+}/Ag}$ has a positive value.	correct	
(a.)	Both and R are true and R is correct explanation of A.	(b.)	Both A and R are true and R is not correct explanation of A.
(c.)	A is true but R is false.	(d.)	Both A and R are false.
(6.)	Hydrogen electrode is placed in the solution will be	n wher	re pH is 10. The potential of this electrode
(a.)	+0.591 V	(b.)	-0.591 V
(c.)	0 V	(d.)	none of these
(7.)	For a reaction $A(s) + 2B^+ \rightarrow A^{2+} + 2B(s)$ K_{c} has been found to be 10^{12} . The E_{cell}^{o} is		
(a.)	0.354 V	(b.)	0.708 V
(c.)	0.0098 V	(d.)	1.36 V
(8.)	The order of equivalent conductance at infini	ite dilu	tion of LiCl, NaCl and KCl?
(a.)	LiCl > NaCl > KCl	(b.)	KCl > NaCl > LiCl
(c.)	NaCl > KCl > LiCl	(d.)	LiCl > KCl > NaCl
(9.)	The reference electrode is made by using		

(a.)	ZnCl ₂	(b.)	CuSO ₄
(c.)	HgCl ₂	(d.)	Hg ₂ Cl ₂
(10.)	Which one of the following is a strong electroly	te?	
(a.)	$\operatorname{Ca}(\operatorname{NO}_3)_2$	(b.)	HCN
(c.)	H ₂ SO ₃	(d.)	NH4OH
(11.)	Which of the following decrease on dilution of e	electr	olyte solution?

- (a.) equivalent conductance (b.) molar conductance
- (c.) specific conductance (d.) conductance
- **(12.)** The variation of equivalent conductance of strong electrolyte with concentration is correctly shown in which figure:

(13.) The quantity of charge required to obtain one mole of aluminum from Al_2O_3 is

- (a.) 1 P (b.) 6 F
- (c.) 3 F (d.) 2 F

(14.) Electrolysis of H_2SO_4 (conc.) gives the following at anode? (A) H_2 (B) O_2 (C) $H_2S_2O_3$ (D) $H_2S_2O_8$

(a.)
$$\Lambda = \frac{X \times 1000}{0.1}$$
 (b.) $\Lambda = \frac{2 \times 1000}{X \times 0.1}$
(c.) $\Lambda = \frac{X \times 1000}{0.5}$ (d.) $\Lambda = \frac{0.5}{1000X}$

(15.) Using the data given below find out the strong oxidising agent $E^{\circ}_{Cl_2O_7/Cr} = 1.33V \quad E^{\circ}_{Cl_2/Cl^-} = 1.36V$ $E^{\circ}_{MnO_4/Mn^{2+}} = 1.51V \quad E^{\circ}_{Cr^{3+}/Cr} = -0.74V$

- (a.) Cl⁻
- (b.) Mn²⁺
- (c.) MnO_4^-

(d.)	Cr ³⁺		
(16.)	E^{o} for the cell $Zn Zn^{2+}(aq) Cu^{2+}(aq) / Cuisl$ constant for the cell reaction	.10V	at 25°C is 1. 10V at25°C. The equilibrium
Zn +	$\operatorname{Cu}^{2+}(\operatorname{aq}) \Box \operatorname{Cu} + \operatorname{Zn}^{2+}(\operatorname{aq}) \text{ is of the order of}$		
(a.)	10 ⁻³⁷	(b.)	10 ³⁷
(c.)	10 ⁻¹⁷	(d.)	10 ¹⁷
(17.)	When dil.HNO3 is electrolysed		
(a.)	$H_2(g)$ is formed at anode	(b.)	$O_2(g)$ is formed at anode
(c.)	NO ₂ is formed at anode	(d.)	N_2 is formed at anode
(18.)	The equivalent conductivity of a solution conta Its conductivity would be	aining	2.54 g of CuSO $_4$ per litre is $91\Omega^{-1}$ cm ² eq ⁻¹ .
(a.)	$2.9 \times 10^{-3} \Omega^{-1} cm^{-1}$	(b.)	$1.8 \times 10^{-2} \Omega^{-1} cm^{-1}$
(c.)	$2.4 \times 10^{-4} \Omega^{-1} \text{cm}^{-1}$	(d.)	$3.6 \times 10^{-3} \Omega^{-1} cm^{-1}$
(19.)	Prevention of corrosion of iron by zinc coating	g is cal	lled
(a.)	electrolysis	(b.)	Photoelectrolysis
(c.)	cathodic protection	(d.)	galvanization
(20.)	Which of the following is not an anodic reaction	on?	
(a.)	$Ag^+ \rightarrow Ag - e^-$	(b.)	$Cu \rightarrow Cu^{2+} + 2e^{-}$
(c.)	$\mathrm{Fe}^{2+} \rightarrow \mathrm{Fe}^{3+} + \mathrm{e}^{-}$	(d.)	$4\text{OH}^- \rightarrow 2\text{H}_2\text{O} + \text{O}_2 + 4\text{e}^-$
(21.)	When $0.1 \text{ mol } \text{MnO}_4^{2-}$ is oxidised the quantit MnO_4^{2-} to MnO_4^{-} is	ty of	electricity required to completely oxidise
(a.)	96500 C	(b.)	2×96500C
(c.)	9650 C	(d.)	96.50 C
(22.)	The oxidation potential of a hydrogen electro	de at j	pH = 1 is $(T = 298K)$
(a.)	0.059 V	(b.)	0
(c.)	–0.059 V	(d.)	0.59 V
(23.)	On the basis of E ^a values, the strongest oxidiz $\left[\operatorname{Fe}(\operatorname{CN})_{6}\right]^{4} \rightarrow \left[\operatorname{Fe}(\operatorname{CN})_{6}\right]^{3^{-}} + e^{-}; E^{a} = -0.35 \mathrm{V}$ $\operatorname{Fe}^{2^{+}} \rightarrow \operatorname{Fe}^{3^{+}} + e^{-}; E^{a} = -0.77 \mathrm{V}$	zing aş	gent is
(a.)	Fe ³⁺		
(b.)	$\left[\operatorname{Fe}(\operatorname{CN})_{6} \right]^{3-}$		
(c.)	$\begin{bmatrix} Fe (CN) \end{bmatrix}_{1}^{4}$		

(d.) Fe²⁺

(24.)	Molar conductance (Λ°_{m}) at infinite dilution o	f NaCl	I, HCl and CH ₃ COONa are 126.4, 425.9 and
	91.0 Scm ² mol ⁻¹ resp. Λ_m° for CH ₃ COOH will be		
(a.)	425.5 S cm ² mol ⁻¹	(b.)	180.5Scm ² mol ⁻¹
(c.)	290.8 S cm ² mol ⁻¹	(d.)	390.5 S cm ² mol ⁻¹
(25.)	The passage of electricity in the Daniel cell wh	ien Zn	and Cu electrodes are connected is:
(a.)	From Cu to Zn in the cell	(b.)	From Cu to Zn outside the cell
(c.)	From Zn to Cu outside the cell	(d.)	In any direction of cell
(26.)	KCl is used in salt bridge because		Ι
(a.)	it forms a good jelly with agar-agar	(b.)	it is a strong electrolyte
(c.)	it is a good conductor of electricity	(d.)	the transference number of K^+ and C $$ ions are almost equal
(27.)	The cell constant of a conductivity cell —		
(a.)	changes with change of electrolyte	(b.)	changes with change of concentration of electrolyte
(c.)	change with temperature of electrolyte	(d.)	remains constant for a cell
(28.)	The number of electrons delivered at the cather 60 seconds is (charge one electron $= 1.6 \times 10^{-19}$		uring the electrolysis by a current of 1 A in
(a.)	6×10^{23}	(b.)	6×10^{20}
(c.)	3.75×10^{20}	(d.)	7.48×10^{23}
(29.)	The specific conductance in ohm ⁻¹ cm ⁻¹ of four P = 5×10^{-5} Q = 7×10^{-8} R = 1×10^{-10} S = 9.2×10^{-3} The one that offers highest resistance to the particular of the second sec		
(a.)	P	(b.)	
(c.)	R	(d.)	
(30.)	Which of the following is a cathode $R \times N$?		
(a.)	$Fe^{2+} \rightarrow Fe^{3+}$	(b.)	$4OH^- \rightarrow 2H_2O + O_2$
(c.)	$2H_2O \rightarrow 2OH^- + H_2$		$2\mathrm{SO}_4^{2-} \to \mathrm{S}_2\mathrm{O}_8^{2-}$
(31.)	If the E_{cell}^{o} for a given reaction has negative relationship for the values of ΔG° and K_{eq} ?	value	e, which of the following gives the correct
(a.)	$\Delta G^{\circ} >, K_{eq} < 1$	(b.)	$\Delta G^{o} > 0; K_{eq} > 1$
	$\Delta G^{\circ} < 0; K_{eq} > 1$		$\Delta G^{o} < 0; K_{eq} < 1$
(32.)	Cell reaction is spontaneous when		

(a.) (c.)	ΔG° is negative ΔE°_{red} is positive	(b.) (d.)	ΔG^{o} is positive ΔE^{o}_{red} is negative	
(33.)	(33.) For a given half cell: $Al^{3+} + 3e^- \rightarrow Al$, on increasing $[Al^{3+}]$, the electrode potential			
(a.)	increase	(b.)	decrease	
(c.)	No change	(d.)	first decrease then increase	
(34.)	Assertion: Mercury cell does not give steady Reason: In the cell reaction, ions are not invo	-		
(a.)	Both A and R are true but R is correct explanation of A.	(b.)	Both A and R are true and R is not correspondent of A.	rect
(c.)	A is true bur R is false.	(d.)	A is false but R is true.	
(35.)	Which of the following statements is not corr	ect abo	ut an inert electrode in a cell	
(a.)	It does not participate in the cell reaction.	(b.)	It provides the surface either for oxida or reduction reaction.	ition
(c.)	It provides surface for the conduction of electrons.	(d.)	It provides surface for redox reaction.	
(36.) The standard oxidation potentials for the half cell reactions are $Zn \rightarrow Zn^{2+} + 2e^{-}; E^{\circ} = +0.76V$ $Pe \rightarrow Fe^{2+} + 2e^{-}; E^{\circ} = +0.41V$ The emf of the cell reaction: $Fe^{2+} + Zn \rightarrow Zn^{2+} + Fe$ is				
(a.)	-0.35V	(b.)	+0.35V	
(c.)	+1.17V		-1.17V	
(37.)	(186.) Zn cannot displace following ions from	n their	aqueous solution:	
(a.)	Ag ⁺	(b.)	Cu ²⁺	
(c.)	Fe ²⁺	(d.)	Na ⁺	
(38.)	Matrix match.			
	Column 1	(Column 2	
	(A) Λ _m	(p) Scm ⁻¹	

(a.)	$A \rightarrow r, B \rightarrow p, C \rightarrow q, D \rightarrow s$
(c.)	$A \rightarrow r, B \rightarrow s, C \rightarrow p, D \rightarrow q$

(B) E_{cell}

(C) K

(D) G[.]

(b.) $A \rightarrow r, B \rightarrow s, C \rightarrow p, D \rightarrow q$

(q) m⁻¹

(s) V

(r) Scm²mol⁻¹

(d.) $A \rightarrow r, B \rightarrow q, C \rightarrow p, D \rightarrow s$

(39.) What will be the emf for the given cell			
$\mathrm{Pt}\left \mathrm{H}_{2}\left(\mathrm{P}_{1}\right)\right \mathrm{H}^{+}\left(\mathrm{aq}\right)\parallel\mathrm{H}_{2}\left(\mathrm{P}_{2}\right) \mathrm{Pt}$			
(a.) $\frac{\text{RT}}{\text{F}}\log e \frac{\text{P}_1}{\text{P}_2}$	(b.)	$\frac{\mathrm{RT}}{\mathrm{2F}}\log\mathrm{e}\frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}$	
(c.) $\frac{\text{RT}}{\text{F}} \log e \frac{\text{P}_2}{\text{P}_1}$	(d.)	none of the above	
(40.) How much electric charge is required to ox	idize 1 n	nole of FeO to Fe_2O_3 ?	
(a.) 49600 C	(b.)	2×96500C	
(c.) 96500 C	(d.)	4×96500C	
(41.) Assertion: Λ_m for weak electrolytes show diluted. Reason: For weak electrolytes deg solution.	-	-	
(a.) Both A and R are true and R is correct explanation of A.	(b.)	Both A and R are true and R is nor correct explanation of A.	
(c.) A is true but R is false.	(d.)	Both A and R are false.	
(42.) Which one is not called a anode reaction from	om the fo	ollowing?	
(a.) $\operatorname{Cl}^{!} \to \frac{1}{2} \operatorname{Cl}_{2} + e^{-}$	(b.)	$Cu \rightarrow Cu^{2+} + 2e^{-}$	
(c.) $Hg^+ \to Hg^{2+} + e^-$	(d.)	$Zn^{2+} + 2e^- \rightarrow Zn$	
(43.) The unit of equivalent conductivity is			
(a.) ohm cm	(b.)	$ohm^{-1}cm^2(g equivalent)^{-1}$	
(c.) ohm cm^2 (g equivalent)	(d.)	S cm ⁻²	
(44.) The molar conductivity of a $0.5 \text{ mol}/\text{dm}^3 \text{ s}$ $5.76 \times 10^{-3} \text{Scm}^{-1}$ at 298 K is	solution	of AgNO ₃ with electrolytic conductivity of	
(a.) $2.88 \text{ S cm}^2 / \text{mol}$	(b.)	$11.52 \text{ S cm}^2 / \text{mol}$	
(c.) $0.086 \text{ S cm}^2 / \text{mol}$	(d.)	$28.8 \text{ S cm}^2 / \text{mol}$	
(45.) Assertion: Cu is less reactive than hydroge Reason: $E^{\circ}_{Cu^{2+}/Cu}$ is negative.	n.		
(a.) Both A and R are true R is correct explanation of A.	(b.)	Both A and R are true and R is not the correct explanation of A.	
(c.) A is true but reason is false.	(d.)	Both A and R are false.	
(46.) The emf of the cell $Zn Zn^{2+} (a = 0.1/1M)$ constant for the cell reaction is	$) \parallel Fe^{2+}$ ((a = 0.01M) / Fe is0.2905 V. The equilibrium	
(a.) $10^{0.32/0.591}$	(b.)	10 ^{032/0.0295}	
(c.) $10^{0.26/0.0295}$	(d.)	10 ^{032/0295}	

(47.)	How many moles of KMnO ₄ in acidic m	electrons are needed for the reduction of 20 ml of 0.5 M solution of dium	of
(a.)	5×10 ⁻²	(b.) 5×10^{-3}	
(c.)	10 ⁻²	(d.) 10^{-5}	
(48.)		potentials at $25^{\circ}C$, Li^+ / Li , Ba^{2+} / Ba , Na^+ / Na and Mg^{2+} / Mg a $-2.37V$ respectively. Which one of the following is strongest oxidising	re 1g
(a.)	Ba ²⁺	(b.) Mg^{2+}	
(c.)	Na^+	(d.) Li ⁺	
(49.)		obalt metal will be deposited when a solution of cobalt (II) chloride i urrent of 10 A for 109 minutes $(1F = 96500C, atomic mass of Co = 59u)$	S
(a.)	4.0	(b.) 20.0	
(c.)	40.0	(d.) 0.66	
(50.)	In SHE, the pH of a	l solution should be	
(a.)	7	(b.) 14	

(a.)	7	(b.)	14
(c.)	0	(d.)	4

TOPIC WISE PRACTICE QUESTIONS

TOPIC 1: Cells and Electrode Potential

1.	The function of a sal	t bridge is to			
	1) maintain electrica	l neutrality of both half	cells.		
	2) increase the cell potential at the positive electrode.				
	3) decrease the cell p	potential at the negative	e electrode.		
	4) eliminated the im	purities present in the e	lectrolyte.		
2.	Standard electrode p	otential of SHE at 298	K is:		
	1) 0.05 V	2) 0.10 V	3) 0.50 V	4) 0.00 V	
3.	The standard EMF of	of quinhydrone electrod	le is 0.699 V. The EMF	F of the quinhydrone electrode dipped	
	in a solution with pH	H = 10 is:			
	1) 0.109 V	2) – 0.109 V	3) 1.289 V	4) – 1.289 V	
4.	$\mathbf{I\!E}^{\mathrm{o}}_{\mathrm{Fe}^{2^{+}}/\mathrm{Fe}} = -0.441\mathrm{V}$	and $E^{o}_{Fe^{3+}/Fe^{2+}} = +0.771V$	V the standard EMF of	the reaction $Fe + 2Fe^{3+} \rightarrow 3Fe^{2+}$ will	
	be				
	1) 1.653 V	2) 1.212 V	3) 0.111 V	4) 0.330 V	
5.	In the electrolytic ce	ll, flow of electrons is f	from		
	1) cathode to anode	in solution.	2) cathode to anode the	hrough external supply.	
	3) cathode to anode	through internal supply	. 4) anode to cathode the	hrough internal supply.	
6.			-	action into electrical energy?	
		2) Electrolytic cell	*	4) both 1) and 3)	
7.	Which of the follow:	ing reaction is possible			
	1) $2Cr^{3+} + 7H_2O \rightarrow$		2) $F_2 \rightarrow 2F^-$		
	3) $(1/2)O_2 + 2H^+ -$	\rightarrow H ₂ O	4) None of these		
8.	1	led a anode reaction fro	-		
	1) $\operatorname{Cl}^{-} \rightarrow \frac{1}{2} \operatorname{Cl}_{2} + e^{-}$	2) $Cu \rightarrow Cu^{++} + 2e^{-}$	3) $Hg^+ \rightarrow Hg^{++} + e^-$	4) $Zn^{2+} + 2e^- \rightarrow Zn$	

9.	Which one of the following statement is true for a electrochemical cell? 1) H ₂ is cathode and Cu is anode. 2) H ₂ is anode and Cu is cathode.
	 3) Reduction occurs at H₂ electrode. 4) Oxidation occurs at Cu electrode.
10.	$\frac{\operatorname{Zn}(s) \operatorname{Zn}^{2+}(aq) \operatorname{Cu}^{2+}(aq) \operatorname{Cu}(s) \text{ is }}{\operatorname{(anode)}}$
11.	1) Weston cell2) Daniel cell3) Calomel cell4) Faraday cellIf the following half cells have E° values as
	$A^{3+} + e^- \rightarrow A^{2+}, E^o = y_2 V$
	$A^{2+} + 2e^- \rightarrow A, E^\circ = -y_1 V$
	The E ^o of the half-cell $A^{3+} + 3e \rightarrow A$ will be
	1) $\frac{2y_1 - y_2}{3}$ 2) $\frac{y_2 - 2y_1}{3}$ 3) $2y_1 - 3y_2$ 4) $y_2 - 2y_1$
12.	A concentration cell is a galvanic cell in which
	1) Decrease in free energy in a spontaneous chemical process appears as electrical energy.
	2) Decrease in free energy in a spontaneous physical process appears as electrical energy.3) Decrease in free energy in a spontaneous physical or chemical process appears as electrical energy.
	4) A non-spontaneous physical or chemical process produces electrical energy.
13.	Based on the cell notation for a spontaneous reaction, at the anode :
	Ag (s) $ $ AgCl (s) $ $ Cl ⁻ (aq) $ $ Br ⁻ (aq) $ $ Br ₂ (l) $ $ C (s)
	1) AgCl gets reduced 2) Ag gets oxidized 3) Br– gets oxidized 4) Br ₂ gets reduced (4) Br ₂ gets reduced
14.	Zn can displace: 1) Ma from its aqueous solution 2) Cu from its aqueous solution
	1) Mg from its aqueous solution.2) Cu from its aqueous solution.3) Na from its aqueous solution.4) Al from its aqueous solution.
15.	The oxidation potential of a hydrogen electrode at $pH = 10$ and $H_2 p = 1$ atm is
	1) -0.59 V 2) 0.00 V 3) $+0.59$ V 4) 0.059 V
1.4	
16.	The tendency of an electrode to lose electrons is known as1) Electrode potential 2) reduction potential3) Oxidation potential4) e.m.f.
17.	A smuggler could not carry gold by depositing iron on the gold surface since
17.	1) Gold is denser 2) iron rusts
	3) Gold has higher reduction potential than iron 4) Gold has lower reduction potential than iron
18.	The correct order of $E^{o}{}_{M^{2+}/M}$ values with negative sign for the four successive elements Cr, Mn, Fe and
	1) $Mn > Cr > Fe > Co 2$) $Cr < Fe > Mn > Co$ 3) $Fe > Mn > Cr > Co 4$) $Cr > Mn > Fe > Co$
19.	TOPIC 2: Nernst Equation The E° at 25 °C for the following reaction is 0.22 V. Calculate the equilibrium constant at 25° C :
17.	$H_2(g) + 2AgCl(s) \rightarrow 2Ag(s) + 2HCl(aq)$
	1) 2.8×10^7 2) 5.2×10^8 3) 5.2×10^6 4) 5.2×10^3
20.	For the given Nernst equation
	$E_{cell} = E_{cell}^{\circ} - \frac{RT}{2F} \ln \frac{\left[Mg^{2+}\right]}{\left[Ag^{+}\right]^{2}}$
	$L_{cell} = L_{cell} = \frac{1}{2F} m \frac{1}{\left[Ag^+ \right]^2}$
	Which of the following representation is correct?
	(a) $Ag^+ Ag Mg^{2+} Mg$ (b) $Mg^{2+} Mg Ag Ag^+$ (c) $Mg Mg^{2+} Ag^+ Ag$ (d) $Mg Mg^{2+} Ag Ag^+$
21.	For a given reaction: $M(x+n) + ne^- \rightarrow M^{x+}$, E^- red is
	known along with $M^{(x+n)}$ and M^{x+} ion concentrations. Then
	1) n can be evaluated.2) x can be evaluated.3) $(x + n)$ can be evaluated4) n x $(x + n)$ can be evaluated
22.	3) $(x + n)$ can be evaluated. Without losing its concentration ZnCl ₂ solution cannot be kept in contact with
	1) Au2) Al3) Pb4) Ag
23.	The oxidation potentials of A and B are +2.37 and +1.66 V respectively. In chemical reactions
	1) A will be replaced by B2) A will replace B
1	

	3) A will not replace B 4) A and B will not replace each other
24.	The emf of the cell
	Ni $ Ni^{2+} (1.0 \text{ M}) Au^{3+} (1.0 \text{ M}) Au$ is
	[Given E^0Ni^{2+} / $Ni = -0.25$ V and E^0Au^{3+} / $Au = +1.5$ V]
	1) 2.00 V 2) 1.25 V 3) - 1.25 V 4) 1.75 V
25.	In the cell reaction
	$Cu(s) + 2Ag^{+}(aq) \rightarrow Cu^{2+}(aq) + 2Ag(s),$
	$E^{o}_{cell} = 0.46 \text{ V}$. By doubling the concentration of Cu^{2+} , E^{o}_{cell} will become
	1) Doubled 2) halved
26	3) Increases but less than double 4) decreases by a small fraction
26.	Following cell has EMF $0.7995V$.
	Pt H ₂ (1 atm) HNO ₃ (1M) AgNO ₃ (1M) Ag
	If we add enough KCl to the Ag cell so that the final Cl ⁻ is 1M. Now the measured emf of the cell is 0.222 V. The K_{sp} of AgCl would be –
	$\begin{array}{c} 0.222 \text{ V. The K_{sp} of Age1 would be } - \\ 1) 1 \times 10^{-9.8} \\ 2) 1 \times 10^{-19.6} \\ 3) 2 \times 10^{-10} \\ 4) 2.64 \times 10^{-14} \end{array}$
27.	In a cell that utilises the reaction $3/2 \times 10^{-4}$
27.	$Zn(s) + 2H^{-}(aq) \rightarrow Zn^{2+}(aq) + H_2(g)$ addition of H_2SO_4 to cathode compartment, will
	1) Increase the E and shift equilibrium to the right
	2) Lower the E and shift equilibrium to the right
	3) Lower the E and shift equilibrium to the left
	4) Increase the E and shift equilibrium to the left
28.	At equilibrium:
	1) $E_{cell}^{0} = 0$, $\Delta G^{\circ} = 0$ 2) $E_{cell} = 0$, $\Delta G = 0$ 3) Both are correct 4) None is correct
29.	Equivalent conductivity can be expressed in terms of specific conductance (κ) and concentration (N) in
	gram equivalent dm ⁻³ as :
	1) $\kappa \times N$ 2) $\frac{\kappa \times 1000}{N}$ 3) $\frac{\kappa \times N}{1000}$ 4) $\kappa \times N \times 1000$
	1) $\kappa \times N$ 2) $$
30.	The ionic conductivity of Ba^{2+} and Cl^{-} at infinite dilution are 127 and 76 ohm ⁻¹ cm ² eq ⁻¹ respectively.
	The equivalent conductivity of BaCl ₂ at infinity dilution (in ohm ^{-1} cm ^{2} eq ^{-1})
	would be :
	1) 203 2) 279 3) 101.5 4) 139.5
31.	The increase in equivalent conductivity of a weak electrolyte with dilution is due to
	1) increase in degree of dissociation and decrease in ionic mobility.
	2) decrease in degree of dissociation and decrease in ionic mobility.
	3) increase in degree of dissociation and increase in ionic mobility.4) decrease in degree of dissociation and increase in ionic mobility.
32.	For a relation
52.	$\Delta_{\rm r}G = -{\rm nFE}_{\rm cell}$
	$E_{cell} = E_{cell}^{0}$ in which of the following condition?
	1) Concentration of any one of the reacting species should be unity
	 2) Concentration of all the product species should be unity. 2) Concentration of all the product species should be unity.
	 3) Concentration of all the reacting species should be unity. 4) Concentration of all reacting and product species should be unity.
33.	4) Concentration of all reacting and product species should be unity. If x is the specific resistance of the solution and N is the normality of the solution, the equivalent
55.	conductivity of the solution is given by
	1) 1000 x/N 2) 1000/Nx 3)1000N/x 4)Nx/1000
34.	For an electrolyte solution of 0.05 mol L^{-1} , the conductivity has been found to be 0.0110 S cm– 1. The
–	molar conductivity is
	1) $0.055 \text{ S cm}^2 \text{ mol}^{-1} \text{ 2}$) $550 \text{ S cm}^2 \text{ mol}^{-1} \text{ 3}$) $0.22 \text{ S cm}^2 \text{ mol}^{-1} \text{ 4}$) $220 \text{ S cm}^2 \text{ mol}^{-1}$
35.	On which of the following magnitude of conductivity does not depends?
	1) Nature of material2) Temperature3) Pressure4) Mass of the material
36.	The resistance of 0.01 N solution of an electrolyte was found to be 220 ohm at 298 K using a
	conductivity cell with a cell constant of 0.88 cm ⁻¹ . The value of equivalent conductance
	of solution is –
	1) 400 mho cm ² g eq ⁻¹ 2) 295 mho cm ² g eq ⁻¹

	3) 419 mho cm ² g eq ⁻¹ 4) 425 mho cm ² g eq ⁻¹
37.	The correct order of equivalent conductance at infinite dilution of LiCl, NaCl and KCl is
	1) $\text{LiCl} > \text{NaCl} > \text{KCl}$ 2) $\text{KCl} > \text{NaCl} > \text{LiCl}$
38.	3) NaCl > KCl > LiCl 4) LiCl > KCl > NaCl Which of the following expression correctly represents maler conductivity?
30.	Which of the following expression correctly represents molar conductivity? K = K = K = K = K = K = K = K = K = K =
	1) $\wedge_{m} = \frac{K}{C}$ 2) $\wedge_{m} = \frac{KA}{1}$ 3) $\wedge_{m} = KV$ 4)all of these
39.	At 25°C, the molar conductance at infinite dilution for the strong electrolytes NaOH, NaCl and BaCl ₂
57.	are 248×10^{-4} , 126×10^{-4} and 280×10^{-4} Sm ² mol ⁻¹ respectively.
	\wedge_{m}^{0} Ba (OH), in S m ² mol ⁻¹ is
	$\begin{array}{c} m & (1) & (2) & ($
40.	The ion of least limiting molar conductivity among the following is
	1) SO^{2-}_{-} 2) H ⁺ 3) Ca^{2+}_{-} 4) CH COO ⁻
41.	Specific conductance of a 0.1 N KCl solution at 23°C is 0.012 ohm ⁻¹ cm ⁻¹ . Resistance of cell containing
	the solution at same temperature was found to be 55 ohm. The cell constant is
	1) 0.0616 cm-1 2) 0.66 cm-1 3) 6.60 cm-1 4) 660 cm-1
42.	The equivalent conductances of two strong electrolytes at infinite dilution in H ₂ O (where ions move
	freely through a solution) at 25°C are given below:
	$\Lambda^{0}_{CH_{3}COONa} = 91.0S cm^{2} / equiv.$
	$\Lambda^0_{\rm HCI} = 426.2S \rm{cm}^2 / equiv.$
	What additional information/ quantity one needs to calculate A^0 of an array relation of a set is a side
	Λ^0 of an aqueous solution of acetic acid? 1) Λ^0 of chloroacetic acid (ClCH ₂ COOH) 2) Λ^0 of NaCl
	3) Λ^0 of CH ₃ COOK 4) the limiting equivalent coductance of $H^+(\lambda^0_{H^+})$
	TODIC 4. Electrolysic and Types of Electrolysic
12	TOPIC 4: Electrolysis and Types of Electrolysis
43.	The electric charge required for electrode deposition of one gram - equivalent of a substance is :1) one ampere per second.2) 96500 coulombs per second.
	3) one ampere for one hour. 2) you contain the second.
44.	How many minutes will it take to plate out 5.2 g of Cr from a $Cr_2(SO_4)_3$ solution using a current of 9.65
	A?
	(Atomic mass: $Cr = 52.0$)
45.	1) 200 2) 50 3) 100 4) 103 Which of the following is the use of electrolysic?
43.	Which of the following is the use of electrolysis?1) Electrorefining2) Electroplating3) Both 1) & 2)4) None of these
46.	By virtue of Faraday's second law of electrolysis, the electrochemical equivalent of the two metals
	liberated at the electrodes has the same ratio as that of their
	1) atomic masses2) molecular masses3) equivalent masses4) any of three
47.	In electrolysis of very dilute NaOH using platinum electrodes
	 H₂ is evolved at cathode and O₂ at anode NH₃ is produced at anode NH₃ is produced at anode
	4) O_2 is produced at cathode and H_2 at anode
48.	Reaction that takes place at graphite anode in dry cell is
	1) $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$ 2) $Zn(s) \rightarrow Zn^{2+}(aq) + 2e^{-}$
40	
49.	Electrolysis of fused NaCl will give1) Na2) NaOH3) NaClO4) None of these
50.	1) Na2) NaOH3) NaClO4) None of theseAn unknown metal M displaces nickel from nickel (II) sulphate solution but does not displace
50.	manganese from manganese sulphate solution. Which order represents the correct order of reducing
	power?
	1) $Mn > Ni > M$ 2) $Ni > Mn > M$ 3) $Mn > Ni$ 4) $M > Ni > Mn$

51.	A solution of sodium sulphate in water is electrolysed using inert electrodes. The products at the cathode and anode are respectively
52.	1) H ₂ , O ₂ 2) O ₂ , H ₂ 3) O ₂ , Na 4) O ₂ , SO ₂ If 0.5 amp. current is passed through acidified silver nitrate solution for 100 minutes. The mass of silver
52.	deposited on cathode, is (eq.wt.of silver = 108)
	1) 2 3523 g (2) 3 3575 g (3) 5 3578 g (4) 6 3575 g
53.	1) 2.3523 g 2) 3.3575 g 3) 5.3578 g 4) 6.3575 g Find the charge in coulombs required to convert 0.2 mole VO_2^{2-} into VO_2^{3-}
	3 4
	1) 1.93×10^4 2) 9.65×10^4 3) 1.93×10^5 4) 9.65×10^5
54.	The amount of electricity that can deposit 108 g of Ag from AgNO ₃ solution is:
	1) 1 F 2) 2 A 3) 1 C 4) 1 A
55.	Three faradays electricity was passed through an aqueous solution of iron (II) bromide. The weight of
	iron metal
	(at. wt = 65) deposited at the cathode (in gm) is 112
	1) 56 2) 84 3) 112 4) 168
	TOPIC 5: Commercial Cell and Corrosion
56.	Which of the following statement is false for fuel cells?
1	1) They are more efficient 2) They are free from pollution
	3) They run till reactants are active 4) Fuel burned with O_2
57.	Among the following cells:
	(i) Leclanche cell (ii) Nickel-Cadmium cell (iii) Lead storage battery (iv) Mercury cell
	primary cells are
	1) (i) and (ii) 2) (i) and (iii) 3) (ii) and (iii) 4) (i) and (iv)
58.	Identify the correct statement :
	1) Corrosion of iron can be minimized by forming a contact with another metal with a higher reduction
	potential.
	2) Iron corrodes in oxygen free water
	3) Corrosion of iron can be minimized by forming an impermeable barrier at its surface.
-	4) Iron corrodes more rapidly in salt water because its electrochemical potential is higher.
59.	Several blocks of magnesium are fixed to the bottom of a ship
	1) make the ship lighter. 2) prevent action of water and salt.
<i>c</i> 0	3) prevent puncturing by under-sea rocks. 4) keep away the sharks.
60.	Which of the following batteries cannot be reused?
	1) Lead storage battery2) Ni-Cd cell3) Mercury cell4) Both (2) and (3)
	9
	NEET PREVIOUS YEARS QUESTIONS
1.	In the electrochemical cell :
1.	$Zn ZnSO_4 (0.01M) CuSO_4 (1.0 M) Cu, the emf of this Daniel cell is E1. When the concentration of$
	$ZnSO_4$ is changed to 1.0M and that of CuSO ₄ changed to 0.01M, the emf changes to E ₂ . From the
	followings, which one is the relationship between E_1 and E_4 ? (Given, RT/F= 0.059) [2017]
	1) $E_1 < E_2$ 2) $E_1 > E_2$ 3) $E_2 = 0 \neq E_1$ 4) $E_1 = E_2$
2.	The pressure of H ₂ required to make the potential of H ₂ -electrode zero in pure water at 298 K is : [2016]
	1) 10^{-14} atm 2) 10^{-12} atm 3) 10^{-10} atm 4) 10^{-4} atm
3.	A device that converts energy of combustion of fuels like hydrogen and methane, directly into electrical
	energy is known as : [2015]
	1) Electrolytic cell 2) Dynamo 3) Ni-Cd cell 4) Fuel Cell
4.	When 0.1 mol MnO^{2-}_{4} is oxidised the quantity of electricity required to completely oxidise MnO^{2-}_{4} to –
	MnO_4^- is: [2014]
	$\begin{array}{c} 1) 96500 \text{ C} \\ 1) 96500 \text{ C} \\ 2) 2 \times 96500 \text{ C} \\ 3) 9650 \text{ C} \\ 4) 96.50 \text{ C} \\ \end{array}$
	1/ 70300 C 2/ 2 × 70300 C 3/ 7030 C 4/ 70.50 C
1	

5. The weight of silver (at wt. = 108) displaced by a quantity of electricity which displaces 5600 mL of O_2 at STP will be :-[2014] 1) 5.4 g 2) 10.8 g 3) 54.9 g 4) 108.0 g For a cell involving one electron $E_{cell}^{\Theta} = 0.59V$ at 298 K, the equilibrium constant for the cell reaction is :-6. [Given that $\frac{2.303\text{RT}}{\text{F}} = 0.059\text{V} \text{ at } \text{T} = 298\text{K}$] [2019] (1) 1.0×10^2 (2) 1.0×10^5 (3) 1.0×10^{10} (4) 1.0×10^{30} For the cell reaction $2Fe^{3+}(aq) + 2I^{-}(aq) \rightarrow 2Fe^{2+}(aq) + I_{-}(aq)$ 7. $E^{\Theta} = 0.24V$ at 298 K. The standard Gibbs energy $(\Delta^0 G^{\Theta})$ of the cell reaction is : [2019] [Given that Faraday constant $F = 96500 \text{ C mol}^{-1}$] (4) 23.16 kJ mol⁻¹ $(1) - 46.32 \text{ kJ mol}^{-1}$ (2) -23.16 kJ mol⁻¹ (3) 46.32 kJ mol⁻¹ 8. [2019-ODISSA] Following limiting molar conductivities are given as $\lambda^{0}_{\mathrm{m}(\mathrm{H}_{2}\mathrm{SO}_{4})} = \mathrm{x} \, \mathrm{Scm}^{2} \, \mathrm{mol}^{-1}$ $\lambda^0_{m(K_2SO_4)} = y \operatorname{Scm}^2 \operatorname{mol}^{-1}$ $\lambda^{0}_{m(CH_{3}COOK)} = z \operatorname{Scm}^{2} \operatorname{mol}^{-1}$ $\lambda_{m}^{0}\left(in\,Scm^{2}\,\,mol^{-1}\right)$ for $\,CH_{3}COOH$ will be (2) x + y - z (3) x - y + z (4) $\frac{(x - y)}{2} + z$ (1) x - y + 2z9. The standard electrode potential (E.) values of Al^{3+}/Al , Ag^{+}/Ag , K^{+}/K and Cr^{3+}/Cr are .1.66 V, 0.80V, --2.93 V and -0.74 V, respectively. The correct decreasing order of reducing power of the metal is : [2019-ODISSA] (1) Ag > Cr > Al > K(2) K > Al > Cr > Ag(3) K > Al > Ag > Cr(4) Al > K > Ag > CrIdentify the reaction from following having top position in EMF series (Std.red. potential) according 10. to their electrode potential at 298 K. [2020-COVID-19] (2) $Fe^{2+} + 2e^{-} \rightarrow Fe_{(s)}$ (3) $Au^{3+} + 3e^{-} \rightarrow Au_{(s)}$ (1) $Mg^{2+} + 2e^{-} \rightarrow Mg_{(s)}$ (4) $K^+ + le^- \rightarrow K_{(s)}$ 11. In a typical fuel cell, the reactants (R) and product (P) are :-[2020-COVID-19] (1) $R = H_{2(g)}, O_{2(g)}; P = H_2O_{2(l)}$ (2) $R = H_{2(g)}, O_{2(g)}; P = H_2O_{(l)}$ (3) $R = H_{2(g)}, O_{2(g)}, Cl_{2(g)}; P = HClO_{4(aq)}$ (4) $R = H_{2(g)}, N_{2(g)}; P = NH_{3(aq)}$ 12. On electrolysis of dil sulphuric acid using platinum (Pt) electrode, the product obtained at anode will be [2020] 2. Hydrogen gas 1. SO_2 gas 3. Oxygen gas 4. H_2S gas The number of Faradays (F) required to produce 20g of calcium from molten CaCl₂ (Atomic mass of Ca 13. $= 40 \text{ g mol}^{-1}$) is [2020] 1)4 2) 1 3) 2 4) 3 14. The molar conductance of NaCl, HCl and CH₃COONa at infinite dilution are 126.45,426.16 and 91.0 S cm^2mol^{-1} respectively. The molar conductance of CH₂COOH at infinite dilution is. Choose the right option for your answer [NEET-2021] 1) 390.71 S cm^2mol^{-1} 2) 698.28 S cm^2mol^{-1} 3) 540.48 S cm^2mol^{-1} 4) 201.28 S cm^2mol^{-1} The molar conductivity of 0.007 M acetic acid is $20 S cm^2 mol^{-1}$. What is the dissociation constant of 15. acetic acid? Choose the correct option. [NEET-2021] $\Lambda^{\circ}_{H^+} = 350 \, S \, cm^2 mol^{-1}$ $|\Lambda^{\circ}_{CH_{3}COO^{-}} = 50 S \, cm^{2} mol^{-1}|_{1}$ 1) $2.50 \times 10^{-4} mol L^{-1}$ 2) $1.75 \times 10^{-5} mol L^{-1}$ 3) $2.50 \times 10^{-5} mol L^{-1}$ 4) $1.75 \times 10^{-4} mol L^{-1}$

16. Given below are half-cell reactions: [NEET-2022] $MnO_{4}^{\text{-}}+8H^{\text{+}}+5e^{\text{-}}\rightarrow Mn^{2\text{+}}+4H \ _{2}O, E^{\text{o}}_{\ _{Mn^{2\text{+}}/MnO_{4}}}=-1.510V$ $\frac{1}{2}O_{2} + 2H^{+} + 2e^{-} \rightarrow H_{2}O_{2}E^{0}_{O_{2}/H_{2}O} = +1.223V$ $\overline{2}^{2}$ Will the permanganate ion, MnO_4^- liberate O₂ from water in the presence of an acid? 2) No, because $E_{cell}^{o} = -0.287V$ 1) Yes, because $E_{cell}^o = +0.287V$ 4) No, because $E_{cell}^o = -2.733V$ 3) Yes, because $E_{cell}^o = +2.733V$ At 298 K, the standard electrode potentials of Cu^{2+}/Cu , Zn^{2+}/Zn , Fe^{2+}/Fe and Ag^+/Ag are 17. 0.34V, -0.76V, -0.44V and 0.80V respectively. [NEET-2022] On the basis of standard electrode potential, predict which of the following reaction cannot occur? 1) $CuSO_{4(aq)} + Zn_{(s)} \rightarrow ZnSO_{4(aq)} + Cu_{(s)}$ 2) $CuSO_{4(aq)} + Fe_{(s)} \rightarrow FeSO_{4(aq)} + Cu_{(s)}$ 3) $FeSO_{4(aq)} + Zn_{(s)} \rightarrow ZnSO_{4(aq)} + Fe_{(s)}$ $4) 2CuSO_{4(aq)} + 2Ag_{(s)} \rightarrow 2Cu_{(s)} + Ag_2SO_{4(aq)}$ 18. Find the emf of the cell in which the following reaction takes place at 298 K [NEET-2022] $Ni(s) + 2Ag^{+}(0.001M) \rightarrow Ni^{2+}(0.001M) + 2Ag(s)$ (Given that $E_{cell}^o = 1.05 \text{ V}, \frac{2.303 \text{ RT}}{\text{F}} = 0.059 \text{ at } 298 \text{ K}$) 1)1.385 V 2) 1.385 V 3) 0.9615 V 4) 1.05 V

NCERT LINE BY LINE QUESTIONS – ANSWERS										
(1.)	b	(2.)	b	(3.)	b	(4.)	с	(5.)	b	
(6.)	b	(7.)	a	(8.)	c	(9.)	d	(10.)	a	
(11.)	c	(12.)	b	(13.)	c	(14.)	d	(15.)	c	
(16.)	b	(17.)	b	(18.)	a	(19.)	d	(20.)	a	
(21.)	c	(22.)	a	(23.)	a	(24.)	d	(25.)	b	
(26.)	d	(27.)	d	(28.)	c	(29.)	c	(30.)	c	
(31.)	a	(32.)	a	(33.)	a	(34.)	d	(35.)	d	
(36.)	b	(37.)	d	(38.)	c	(39.)	b	(40.)	c	
(41.)	a	(42.)	d	(43.)	b	(44.)	b	(45.)	c	
(46.)	b	(47.)	a	(48.)	b	(49.)	b	(50.)	c	

TOPIC WISE PRACTICE QUESTIONS - ANSWERS

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
21) 1 22) 2 23) 2 24) 4 25) 4 26) 1 27) 1 28) 2 29) 2 30) 2 31) 3 32) 3 33) 2 34) 4 35) 4 36) 1 37) 2 38) 4 39) 2 40) 4 41) 2 42) 2 43) 4 44) 2 45) 3 46) 3 47) 1 48) 2 49) 1 50) 3	1) 1	2) 4	3) 1	4) 2	5) 4	6) 4	7) 1	8) 4	9) 2	10) 2
31) 3 32) 3 33) 2 34) 4 35) 4 36) 1 37) 2 38) 4 39) 2 40) 4 41) 2 42) 2 43) 4 44) 2 45) 3 46) 3 47) 1 48) 2 49) 1 50) 3	11) 2	12) 2	13) 2	14) 2	15) 3	16) 3	17) 3	18) 1	19) 1	20) 3
41) 2 42) 2 43) 4 44) 2 45) 3 46) 3 47) 1 48) 2 49) 1 50) 3	21) 1	22) 2	23) 2	24) 4	25) 4	26) 1	27) 1	28) 2	29) 2	30) 2
	31) 3	32) 3	33) 2	34) 4	35) 4	36) 1	37) 2	38) 4	39) 2	40) 4
51) 1 52) 2 53) 1 54) 1 55) 2 56) 4 57) 4 58) 3 59) 2 60) 3	41) 2	42) 2	43) 4	44) 2	45) 3	46) 3	47) 1	48) 2	49) 1	50) 3
31/1 $32/2$ $33/1$ $37/1$ $33/2$ $30/7$ $37/7$ $30/3$ $37/2$ $00/3$	51) 1	52) 2	53) 1	54) 1	55) 2	56) 4	57) 4	58) 3	59) 2	60) 3

NEET PREVIOUS YEARS QUESTIONS- ANSWERS

2	2) 1	3) 4	4) 3	5) 4	6) 3	7) 1	8) 4	9) 2	10) 3
) 2	12) 3	13) 2	14) 1	15) 2	16) 1	17) 4	18) 3		

NCERT LINE BY LINE QUESTIONS - SOLUTIONS

- (1.) (b) In $H_2 O_2$ fuel cell, the combustion of H_2 occurs to create potential difference between the two electrodes.
- (4.) (c) The electrolyte used in Leclanche cell is moist paste of NH_4Cl and $ZnCl_2$.
- (5.) (b) $Ag^+ + e^- \to Ag$

1) 2 11)

$$E_{Ag^{+}/Ag} = E_{Ag^{+}/Ag}^{\circ} - \frac{0.059}{1} \log \frac{1}{\left[Ag^{+}\right]}$$

$$= E^{\,\mathrm{o}}_{\mathrm{Ag^{+}/Ag}} + 0.059 \Big[\mathrm{Ag^{+}}\Big]$$

On increasing $[Ag^{\circ}], E_{Ag^{+}/Ag}$ will increase and it has a positive value.

- (6.) (b) -0.591V
- (9.) (d) Calomel electrode is used as reference electrode.
- **(10.)** (a) Weak acid

HCN \rightarrow Weak acid NH₄OH \rightarrow Weak base Ca (NO₃)₂ \rightarrow Weak acid Weak electrolytes \rightarrow Ca (NO₃)₂ \rightarrow Strong Base \rightarrow Strong Acidic Salt \rightarrow Strong electrolyte

(12) (b)
$$\xrightarrow{} \sqrt{C}$$

i.e., on 1 concentration dissociation of electrolytes decrease Λ_{ac} or Λ^{ac}_{ac} decrease.
(13) (c) $\Lambda_{1}^{1}O_{1} \rightarrow 2\Lambda_{1}^{1} + 3O^{2}$
 $\Lambda_{1}^{1ac} + 3c \rightarrow A(For I mole)$
 $3F$ charge require to obtain 1 mole AI from ALO₇
(14) (d) Electrolysis of Conc.H₂O₄
 $H_{2}SO_{4} \rightarrow H + HSO_{4}$
at cathode $2HSO_{4} \rightarrow H_{2}SO_{4}$ (Marshall sacid) + 2c:
(15) (c)
(16) (b) $E_{can}^{2ac} = \frac{0.059}{2} \log K_{c}$ or $\frac{1.10 \times 2}{0.059} - \log K_{c}$
 $K_{c} = 1.9 \times 10^{17}$
(17) (b) O₂ is formed at anode and H₄ is formed at cathode.
(19) (d) Prevention of corrosion by zinc coating is called galvanization.
 $\frac{M}{M}O_{c}^{2} \rightarrow \frac{M}{M}O_{1}^{-1} + e^{c}$
(21) (c) $0.1mel$ 0.1mel
 $Q = 0.18 + 6.01 \times 96500 C = 9650 C$
(23) (a) $[Fe(CN)_{n}]^{-1} \rightarrow [Fe(CN)_{n}]^{+1} ; B^{19} = +035V$
 $Fe^{ia} \rightarrow Fe^{ia}; Fe^{ia} = 0.77V$
Higher the positive reduction potential, stronger will be the oxidising agent. Oxidising agent oxidises
other compounds and get inself reduced easily.
(24) (d) $\Lambda_{Sec} = 126.45 \text{ cm}^{2}\text{mol}^{-1}$
 $\Lambda_{Oxiccome} = \Lambda_{uccoose} + \Lambda_{we}^{ia} = -\Lambda_{we}^{ia}$
 $= 91 + 425.9 - 126.4 = 390.5 \text{ S cm}^{2}\text{mol}^{-1}$
 $\Lambda_{Oxiccome} = \Lambda_{uccoose} + \Lambda_{we}^{ia} = -\Lambda_{we}^{ia}$
 $= 91 + 425.9 - 126.4 = 390.5 \text{ S cm}^{2}\text{mol}^{-1}$
(25) (b) From Cu to Zu outside the cell.
(26) (c) $Q = 1 \times 1$
 $Q = 1 \times 60 = 60C$
Now, $1.60 \times 10^{10} \text{ C} = 1 \text{ electron}$
 $\therefore 60C = \frac{600}{1.6 \times 10^{12}} = 3.75 \times 10^{19} \text{ electrons}$
 $\therefore 60C = \frac{600}{1.6 \times 10^{12}} = 3.75 \times 10^{19} \text{ electrons}$

i.e. $\Delta G^{\circ} > 0$ $\Delta G^{\circ} = -nRT \log k_{eq}$ For $\Delta G^{\circ} = +ve$, $K_{eq} = -ve$ i.e., $K_{eq} < 1$ $E = E^{\circ} + \frac{0.059}{3} \log \frac{[A1^{3+}]}{[A1]}$ (33.) (a) so, if $\left\lceil A1^{3+} \right\rceil \uparrow = E \uparrow$ (34.) (d) A is false but R is true. (35.) (d) (38.) (c) $A \rightarrow r, B \rightarrow s, C \rightarrow p_2 D \rightarrow q$ (39.) (b) RHS $2H^+ + 2e^- \Box H_2(P_2)$ LHS $H_2(P_1) \Box 2H^T 2e^T$ Overall Rxn: $H_2(P_1) \Box (P_2)$ $E = E^{\circ} - \frac{RT}{nF} ln \frac{P_2}{P_1} = 0 - \frac{RT}{nF} ln \frac{P_2}{P_1} = \frac{RT}{nF} ln \frac{P_1}{P_2}$ (41.) (a) For weak electrolyte, Λ_m increase steeply on dilution due to increase in the no. of ions (or degree of dissociation). (42.) (d) $Zn^{2+} + 2e^{-} \rightarrow Zn$ (43.) (b) $ohm^{-1}cm^2(geq)^{-1}$ (44.) (b) $\Lambda_{\rm m} = \frac{K \times 100}{\text{Molarity}(M)}$ $= 5.76 \times \frac{10^{-3} \text{S cm}^{-1} \times 1000}{0.5 \text{ mol cm}^{-3}} = 11.52 \text{ S cm}^2 \text{mol}^{-1},$ (45.) (c) Cu is less reactive than hydrogen because SRP $E_{Cu^{2+}/Cu}^{o} = 0.34V$ and $E_{H^{+}/H}^{o} = 0.0V$ $\mathbf{E} = \mathbf{E}^{\circ} - \frac{0.0591}{1000} \log \mathbf{Q}$ **(46.)** (b) (b) $0.2905 = E^{\circ} - \frac{0.0591}{0.0591}, \log$ [0.1] [0.01] 2 $E^{\circ} = 0.295 + 0.0295 = +0.32V$ $0.32 = \frac{0.0591}{2} \log K$ $K = 10^{0.32/0.265}$ (47.) $n_{KMnO} = 0.5 \times 20 \times 10^{-8} = 10^{-2}$ $Mn^{7+} + 5e^- \rightarrow Mn^{2+}$ So, 1 mole KMnO₄ \rightarrow 5 mole of e^{-} $10^{-2} \text{ mol KMnO}_4 \rightarrow 5 \times 10^{-2} \text{ mole e}^-$ (48.) (b) A cation with maximum value of SRP has the strongest oxidising power. $W = \frac{I \times T \times E}{96500} = \frac{10 \times 109 \times 60 \times 59}{96500 \times 2} = 20$ (**49.**) (b) (50.) (c) In SHE concentration of solution is 1MHCl $1M HCl \rightarrow H^+ + Cl^ \mathbf{p}\mathbf{H} = -\log\left[\mathbf{H}^+\right] = -\log\mathbf{1} = 0$

TOPIC WISE PRACTICE QUESTIONS – SOLUTIONS 1. (1) Maintain electrical neutrality of both half cells. 4) $E_{H_2|H^+}^{\circ} = E_{H_2|H^+}^{\circ} = 0V$ 2. 1) $E = E^{\circ} - 0.059 Ph = 0.699 - 0.059 \times 10 = 0.109 V$ 3. 4. 2) $Fe \longrightarrow Fe^{2+} + 2e$ [Anode] E = -0.441V**(b)** $[Fe^{3+} + e \longrightarrow Fe^{2+}] \times 2$ [Cathode] $E = \pm 0.771V$ $Fe + 2Fe^{3+} \longrightarrow 3Fe^{2+}$ $E_{cell}^{o} = E_{cathode}^{o} - E_{Anode}^{o}$ =.771-(-.441)=.771+.441=1.212 V 5. (4) In electrolytic cell the flow of electrons is from anode to cathode through internal supply. 6. (4) 7. (1) $2Cr^{3+} + 7H_{2}O \rightarrow Cr_{2}O^{2-}_{7} + 14H^{+}$ O.S. of Cr changes from +3 to +6 by loss of electrons. At anode oxidation takes place. Reduction $Zn^{2+} + 2e^- \longrightarrow Zn_{It shows reduction reaction.}$ 8. (2) In electrochemical cell H2 has greater tendency to release electrons. 9. \therefore H₂ is liberated at anode and Cu is deposited at the cathode. 10. (2) The cell in which Cu and Zn rods are dipped in its solution is called Daniel cell. 11. 2) (i) $A^{3+} + e^- \longrightarrow A^{2+}$, $\Delta G_1 = -1 F y_2$ (ii) $A^{2+} + 2e^- \longrightarrow A$, $\Delta G_2 = -2F(-y_1) = 2Fy_1$ Add, (i) and (ii) we get $A^{3+} + 3e^{-} \longrightarrow A$; $\Delta G_3 = \Delta G_1 + \Delta G_2$ $-3FE^\circ = -Fy_2 + 2Fy_1$ $-3FE^{\circ} = -F(\bar{y}_{2} - 2\bar{y}_{1})$ $E^{\circ} = \frac{y_2 - 2y_1}{3}$ 2) In concentration cell the spontaneous process is physical in nature involving transfer of matter from 12. higher concentration to lower concentration in indirect manner. 13. (2) Ag becomes oxidized and Br-becomes reduced. 14. 2) $E_{Zn^{2+}|Zn}^{\circ} < E_{Cu^{2+}|Cu}^{\circ};$ $E_{Cu^{2+}|Cu}^{\circ} + E_{Zn|Zn^{2+}}^{\circ} = +ve$ 15. 3) $E_{\text{oxidation}} = 0.059 \text{ pH} = 0.059 \times 10 = 0.59 \text{ V}$ 3) The magnitude of the electrode potential of a metal is a measure of its relative tendency to loose or 16.

gain electrons. i.e., it is a measure of the relative tendency to undergo oxidation (loss of electrons) or reduction (gain of electrons).

 $M \rightarrow M^{n_+} + n e^-$ (oxidation potential)

 $M^{\rm n+} + ne^- \rightarrow M$ (reduction potential)

- 17. 3) Gold having higher E^{o}_{Red} oxidises $Fe \rightarrow Fe^{2+}$
- 18. 1)

The value of $E_{M^{2+}/M}^{\circ}$ for given metal ions are

$$\begin{split} & E_{\rm Mn}^{\circ}{}^{2+}/_{\rm Mn} = -1.18 \, {\rm V}, \\ & E_{\rm Cr}^{\circ}{}^{2+}/_{\rm Cr} = -0.9 \, {\rm V}, \\ & E_{\rm Fe}^{\circ}{}^{2+}/_{\rm Fe} = -0.44 \, {\rm V} \, \, {\rm and} \\ & E_{\rm Co}^{\circ}{}^{2+}/_{\rm Co} = -0.28 \, {\rm V}. \end{split}$$

The correct order of $E_{M^{2+}/M}^{\circ}$ values without

considering negative sign would be $Mn^{2+} > Cr^{2+} > Fe^{2+} > Co^{2+}$

19. 1)
$$E^{\circ} = \frac{0.0591}{2} \log K_{eq}; \log K_{eq} = \frac{2 \times 0.22}{0.0591} \Rightarrow 7.44 \text{ or } K_{eq} \approx 2.8 \times 10^7$$

20. 3)

21. 1)
$$E_{red} = E_{red}^{\circ} + \frac{0.059}{n} \log \frac{\left[M^{(x+n)} \right]}{\left[M^{x+} \right]}$$

- 22. 2) Without losing its concentration ZnCl₂ solution cannot kept in contact with Al because Al is more reactive than Zn due to its highly negative electrode reduction potential.
- 23. (2) A will replace B.

24. (4) Here Ni is anode and Au is cathode

Given
$$E_{Ni^{2+}/Ni}^{o} = 0.25V$$
 and $E_{Au^{3+}/Au}^{o} = +1.5V$
 $E_{cell}^{o} = E_{A}^{o} - E_{A}^{o} = 1.5 - (-0.25) = 1.5 + 0.25 = 1.75V$

25. 4) emf will decrease

26.

1)

1)

$$2Ag^+ + H_2 \longrightarrow 2H^+ + 2Ag$$

$$E = E^{\circ} - \frac{0.0591}{2} \log \frac{[H^+]^2}{P_{H_2} \times [Ag^+]^2}$$

$$\begin{split} 0.222 &= 0.7995 - \frac{0.0591}{2} \log \frac{1}{[\mathrm{Ag^+}]^2} \\ [\mathrm{Ag^+}] &= 10^{-9.8} \\ \mathrm{K_{sp}} &= [\mathrm{Ag^+}] \, [\mathrm{Cl^-}] = (10^{-9.8}) \times (1) = 10^{-9.8} \end{split}$$

27.

$$\operatorname{Zn}(s) + 2\operatorname{H}^+(aq) \rightleftharpoons \operatorname{Zn}^{2+}(aq) + \operatorname{H}_2(g)$$

$$E_{cell} = E_{cell}^{\circ} - \frac{0.059}{2} \log \frac{[\text{Zn}^{2+}][\text{H}_2]}{[\text{H}^+]^2}$$

Addition of H_2SO_4 will increase [H+] and E_{cell} will also increase and the equilibrium will shift towards RHS.

28. 2) At equilibrium,
$$\Delta G = 0, E_{cell} = 0$$

 $\kappa \times 1000$

29. 2)
$$\Lambda_{eq} = \frac{N}{N}$$

30. 2)
$$\Lambda_{m}^{\infty} (\text{BaCl}_{2}^{-1}) = \lambda_{m}^{\infty} (\text{Ba}^{2+}) + 2\lambda_{m}^{\infty} (\text{Cl}^{-}) = 127 + 2 \times 76 = 279 \text{ ohm}^{-1} \text{cm}^{2} \text{eq}^{-1}$$

- 31. (3) On dilution degree of dissociation of a weak electrolyte increase, hence increase in ionic mobility.
- 32. (3) When the concentration of all reacting species kept unity, then $E_{cell} = E^{\circ}_{cell}$ and the given relation will become

$$\Delta_{\rm r}G = -nFE_{\rm cell}^{\rm o}$$

33. (2) Specific resistance = x

 \therefore Specific conductance (or conductivity) = $\kappa = \therefore \Lambda_{eq} = \frac{\kappa \times 1000}{\kappa} = \frac{1000}{\kappa}$ 4) $\Lambda_{\rm m} = \frac{\kappa \times 1000}{1000} = \frac{N_{\rm c} \times 1000}{0.0110 \times 1000} = 220 \,{\rm Scm}^2 \,{\rm mol}^{-1}$ 34. 0.05 4) Conductivity does not depend upon mass or weight of material. 1) $\Lambda_{eq} = \kappa \times \frac{1000}{N} = \frac{1}{R} \times \frac{1}{a} \times \frac{1000}{N} = \frac{1}{R} \times \frac{1000}{R} = \frac{1}{R} \times \frac{1000}{R} = \frac{1}{N} \times \frac{1000}{R} = \frac{1}{220} \times \frac{1000}{0.01} = 400 \text{ mho cm}^2 \text{ g eq}^{-1}$ 35. 36. (2) As we go down the group 1 (i.e. from Li⁺ to K⁺), the ionic radius increases, degree of solvation 37. decreases and hence effective size decreases resulting in increase in ionic mobility. Hence equivalent conductance at infinite dilution increases in the same order. 38. 4) 39. 2) $\Lambda^{\circ}_{N_{3}^{+}} + \Lambda^{\circ}_{OH^{-}} = 248 \times 10^{-4} \, \mathrm{Sm}^{2} \mathrm{mol}^{-1}$ $\Lambda^{\circ}_{Na^+} + \Lambda^{\circ}_{Cl^-} = 126 \times 10^{-4} \, \mathrm{Sm}^2 \mathrm{mol}^{-1}$ $\Lambda^{\circ}_{B_{2}2^{+}} + \Lambda^{\circ}_{2C1^{-}} = 280 \times 10^{-4} \text{ S m}^{2} \text{mol}^{-1}$ Now, $\Lambda_{Ba(OH)_2}^{\circ} = \Lambda_{BaCl_2}^{\circ} + 2\Lambda_{NaOH}^{\circ} - 2\Lambda_{NaCl}^{\circ}$ $\Lambda_{\text{Ba(OH)}_2}^{\circ} = 280 \times 10^{-4} + 2 \times 248 \times 10^{-4} - 2 \times 126 \times 10^{-4}$ $\Lambda^{\circ}_{Ba(OH)_2} = 524 \times 10^{-4} \text{Sm}^2 \text{mol}^{-1}.$ (4) Larger the size, lower the speed. 40. (2) Specific conductance of the solution (κ) = 0.012 ohm⁻¹ cm⁻¹ and resistance (R) = 55 ohm. 41. Cell constant = Specific conductance \times Observed resistance = $0.012 \times 55 = 0.66$ cm⁻¹. 42. (b) According to Kohlrausch's law, molar conductivity of weak electrolyte acetic acid (CH₃COOH) can be calculated as follows: $\Lambda^{\circ}_{\text{CH}_{3}\text{COOH}} = \left(\Lambda^{\circ}_{\text{CH}_{3}\text{COONa}} + \Lambda^{\circ}_{\text{HCl}}\right) - \Lambda^{\circ}_{\text{NaCl}}$ \therefore Value of Λ°_{NaCl} should also be known for calculating value of $\Lambda^{\circ}_{CH_{2}COOH}$. 4) $A^+_{1mole} + e^- \rightarrow A_{1mole}$ 43. : Charge of 1 mole electron is required for deposition of 1 equivalent of substance. 2) $5.2 = \frac{52}{3} \times \frac{9.65}{96,500} \times t \text{ (sec)}$ 44. t(sec) = 3000t(min) = 5045. (3) Electrorefining and electroplating are done by electrolysis. 46. (3)47. (1) Reduction and oxidation of H_2O occurs to give H_2 at cathode and O_2 at anode. 48. (2)49. (1) When molten or fused NaCl is electrolysed, it yields metallic sodium and gaseous chlorine. Reactions involved are as follows: $NaCl(s) \longrightarrow Na^+(l) + Cl^-(l)$ $Na^+ + e^- \longrightarrow Na(l)$ (at cathode) $Cl^{-}(l) \longrightarrow Cl(g) + e^{-}$ (at anode) $Cl(g) + Cl(g) \longrightarrow Cl_2(g)$ 50. (3) Oxidation potential of M is more than Ni and less than Mn. Hence reducing power Mn > M > Ni51. (1) Water is reduced at the cathode and oxidized at the anode instead of Na⁺ and SO₄²⁻

 $\textbf{Cathode: } 2\text{H}_2\text{O} + 2\text{e}^- \!\rightarrow\! \text{H}_2 + 2\text{OH}^-$

Anode : $H_2O \rightarrow 2H^+ + \frac{1}{2}O_2 + 2e^-$.

52. (b) Given current (i) = 0.5 amp; Time (t) = 100 minutes \times 60 = 6000 sec Equivalent weight of silver (E) = 108. According to Faraday's first law of electrolysis Eit 108 × 0.5 × 6000

$$W = \frac{ER}{96500} = \frac{108 \times 0.5 \times 6000}{96500} = 3.3575g$$

- 53. (1) Charge = 0.2×1 Faraday = 0.2×96500 coulombs = $19300 = 1.93 \times 10^4$ coulombs
- 54. (1) According to Faraday law's of electrolysis, amount of electricity required to deposit 1 mole of metal = 96500 C = 1 F i.e., for deposition of 108 g Ag electricity required = 1 F

55. (2)
$$\operatorname{Fe}^{2+} + 2e^{-} \to \operatorname{Fe}; \operatorname{E}_{\operatorname{Fe}} = \frac{56}{2} =$$

1 Faraday liberates = 28 g of Fe

3 Faraday liberates = $3 \times 28 = 84$ g

- 56. (4) Combustion takes place.
- 57. (4) Primary cells are those cells, in which the reaction occurs only once and after use over a period of time, it becomes dead and cannot be reused again. e.g., Leclanche cell and mercury cell.
- 58. (3) Corrosion of iron can be minimized by forming an impermeable barrier at its surface.
- 59. (2) Magnesium provides cathodic protection and prevent rusting or corrosion.

28

60. (3) Mercury cell being primary in nature can be used only once.

NEET PREVIOUS YEARS QUESTIONS- EXPLANATIONS

1. 2)

For cell,

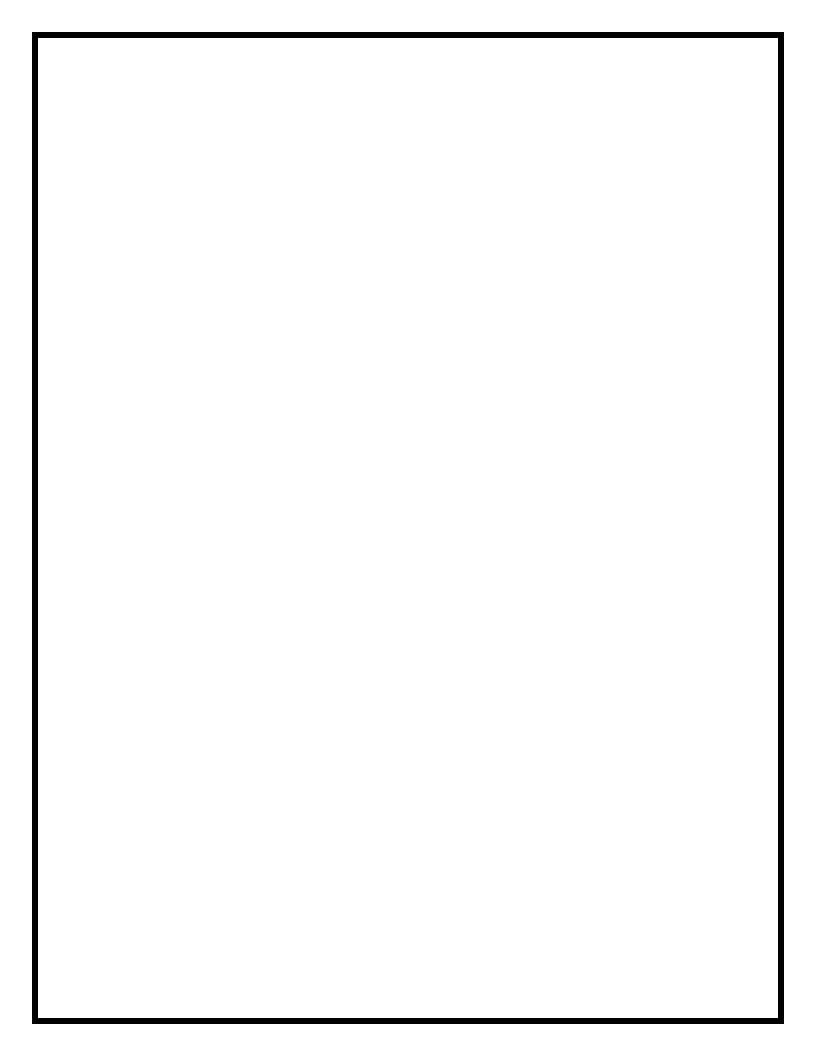
Zn|ZnSO4(0.01 M) || CuSO4(1.0 M)|Cu

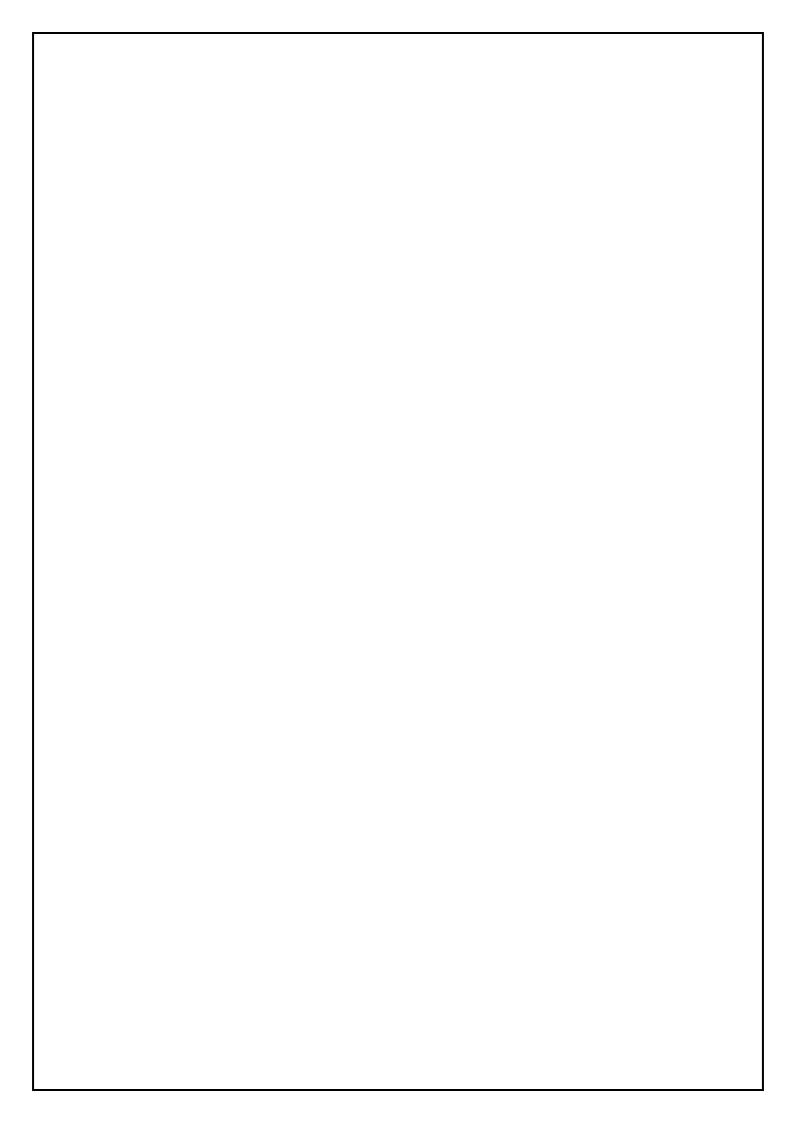
$$E_{cell} = E_{cell}^{\circ} - \frac{2.303RT}{nF} \frac{\log[Zn^{2+}]}{[Cu^{2+}]^2}$$

:
$$E_1 = E_{cell}^{\circ} - \frac{2.303RT}{2 \times F} \times \log \frac{(0.01)}{(1)^2}$$

When concentrations are changed for $ZnSO_4$ and $CuSO_4$, we can write

$$E_{2} = E^{\circ}_{cell} - \frac{2.303RT}{2F} \times \log \frac{1}{(0.01)^{2}} \therefore E_{1} > E_{2}$$
2. 1) $2H^{+}(aq) + 2e^{-} \rightarrow H_{2}(g)$
 $\therefore E = E^{0} - \frac{0.0591}{2} \log \frac{P_{H^{2}}}{[H^{+}]^{2}}$
 $0 = 0 - 0.0295 \log \frac{P_{H_{2}}}{(10^{-7})^{2}}$
 $\frac{P_{H_{2}}}{(10^{-7})^{2}} = 1$
 $P_{H_{2}} = 10^{-14} atm$


3. 4) A device that converts energy of combustion of fuels, directly into electrical energy is known as fuel cell.


3) 0.1 mole4. Quantity of electricity required = $0.1F = 0.1 \times 96500 = 9650 C$ 5. 4) $w_{0_2} = n_{0_2} \times 32$ $W_{O_2} = \frac{5600}{22400} \times 32 = 8g = 1$ equivalent of $O_2 = 1$ equivalent of Ag = 108 6. 3) $E_{cell} = E_{cell}^{o} - \frac{2.303 \text{ RT}}{nE} \log_{10} Q$ at equilibrium $E_{cell} = 0$, $Q = K_{eq}$. $0 = E_{cell}^{o} - \frac{0.0591}{1} \log_{10} K_{eq.}$ $E_{cell}^{o} = +0.0591 \log_{10} K_{eq}$ $0.59 = + 0.0591 \log_{10} K_{eq}$ $+10 = \log_{10} K_{eq.}$ $K_{eq} = 10^{+10}$ 1) $2Fe^{3+}$ (aq) + $2I^{-}$ (aq) $\rightarrow 2Fe^{2+}$ (aq) + I_{2} (aq) 7. n = 2; $\Delta G^0 = -nFE^0$ $= -2 \times 96500 \times (0.24) = -46320$ J $= -46.32 \text{ kJ mol}^{-1}$ 8. 4) $CH_3COOH \rightarrow CH_3COO^- + H^+$...(1) $H_2SO_4 \rightarrow 2H^+ + SO_4^{-2}$...(2) $K_2SO_4 \rightarrow 2K^+ + SO_4^{-2}$...(3) $CH_3COOK \rightarrow CH_3COO^- + K^+$...(4) According to Kohlrausch's law- $\lambda^{\circ}_{CH_{2}COOH} = \lambda^{\circ}_{CH_{2}COO^{-}} + \lambda^{\circ}_{H^{+}}$ eq. (1) = eq. (4) + eq. $\frac{(2)}{2}$ - eq. $\frac{(3)}{2}$ $\therefore \quad \lambda^{\circ}_{CH_{3}COOH} = z + \frac{x}{2} - \frac{y}{2}$ $\lambda^{\circ}_{CH_{3}COOH} = \frac{(\mathbf{x} - \mathbf{y})}{2} + \mathbf{z}(\mathbf{S} \times \mathbf{cm}^{2}\mathbf{mol}^{-1})$ Reducing power of metal $\propto \frac{1}{SRP}$ $_{2)} \mathbf{K} > \mathbf{Al} > \mathbf{Cr} > \mathbf{Ag}.$ 9. (3) According to electrode potential series, 10. $Au^{+3} + 3e^- \rightarrow Au_{(s)}$ (has topmost position \Rightarrow max. SRP) 11. (2) In typical fuel cell Reactants = H_2 , O_2 $Products = H_2O$ 12. 3)On electrolysis of dil H₂ SO₄

As anodes $H_2O \rightarrow 2H^+ + \frac{1}{2}O_2 + 2e^-$ oxygen gas is liberated 13. 2)E of Ca = 40/2 = 20 gr For the deposition of 1gram equivalent wt (20gr) 1F is required 14. 1) $\bigwedge_{m}^{0} CH OOH = \bigwedge_{HCl}^{0} + \bigwedge_{CH_3COONa}^{0} - \bigwedge_{NaCl}^{0} = (426.16 + 91) - 126.45 = 390.71S cm^2 mol^{-1}$ 15. 2) $\lambda_0 = \Lambda_{H^+}^{\circ} + \lambda_0^{\circ} (CH COO^-) = 350 + 50 = 400$; $\lambda = 20$; C = 0.007 m $K_a = \frac{C\lambda^2}{\lambda_0^{\circ}(\lambda_0^{\circ} - \lambda)} = \frac{7 \times 10^{-3} \times (20)^2}{400(400 - 20)}$; $K_c = 1.8 \times 10^{-5}$ 16. In this reaction $CunO_4^{\circ}$ reduce at cathode and H₂O oxidise at anode. So given $E_{MnO_4^{\circ}/Mn^{+2}}^{\circ} = +1.510V$, $E_{o_2/H_2O}^{\circ} = +1.223V$ $E_{o_{cull}}^{\circ} = 1.510 - 1.223 = +0.287$ so, the reaction is spontaneous

17.
$$2CuSO_4 + 2Ag \rightarrow 2Cu + Ag_2SO_4$$
 Ag cannot displace copper from CuSO₄ solute

18.:
$$E = 1.05 - 0.0295 \log \frac{0.001}{(0.001)^2 10^{-3}} = 1.05 - 0.0295 \times 3 = 10.5 - 0.0885 = 0.9615.$$

