[CLASS XII CHEMISTRY PRACTICALS]

Evaluation Scheme for Examination Marks

Volumetric Analysis	08
Salt Analysis	08
Content Based Experiment	06
Project Work	04
Class record and viva	04
	Total 30

Note:- 1. Chemical Equations of Experiment 3 to 11 are to be written on blank pages.

- 2. Observation table of experiment 13 to 16 are to be drawn on blank pages.
- 3. Investigatory Project work (4 marks) is also included in the practical syllabus. For project work, contact the teacher for the topic.
- 4. Project report should be hand written.
- 5. Start each experiment from a new page.

EXPERIMENT – 1		
Classification of Anions		

Group	Group	Observation	Inference
	Reagent		
A	Dilute H ₂ SO ₄	a) Colourless, odourless gas with brisk effervescence (CO_2) which turn lime water milky.	$CO_3^{2^-}$ (Carbonate)
		b) Colourless gas with rotten egg like smell (H_2S) which turns lead acetate paper black.	S^{2^-} (sulphide)
		c) Colourless gas with smell of burning sulphur (SO ₂) which turns acidified dichromate paper green.	$SO_3^{2^-}$ (Sulphite)
		d) Brown coloured gas (NO_2) which turns ferrous sulphate solution black or brown.	NO_2^- (Nitrite)
		e) Colourless gas with vinegar like smell.	CH ₃ COO ⁻ (Acetate)
В	Conc. H ₂ SO ₄	a) Colourless pungent smelling gas (HCl) which gives white dense fumes with glass rod dipped in NH_4OH .	Cl^- (Chloride)
		b) Violet coloured vapours (I_2) which turns starch paper blue.	I [−] (Iodide)
		c) Reddish brown gas (NO ₂) having pungent smell (On adding copper turning, fumes becomes intense)	NO_3^- (Nitrate)
		d) Brown colour gas with pungent smell (Br₂) which turns starch paper yellow.e) Colourless, odourless gas with brisk effervescence	Br ⁻ (Bromide)
		$(CO + CO_2)$ which turns lime water milky and burns on the mouth of test tube with blue flame.	$C_2 O_4^{2-}$ (Oxalate)
C	BaCl ₂	White ppt. of $BaSO_4$ is formed.	SO_4^{2-} (sulphate)
D	Ammonium molybdate 3 (NH ₃) ₄ MoO ₄	Cannary yellow ppt. of phospho ammonium molybdate $(NH_4)_3$ PO ₄ .12 MoO ₃ . $6H_2O$	PO_4^{3-} (phosphate)

EXPERIMENT - 2

Classification of Cations				
Group	Group Reagent	Radical	PPt/Smell	Colour
Zero	NaOH	NH_4^+	Smell of NH ₃	-
Ι	Dil. HCl	Pb ⁺²	PbCl ₂	White
II	H_2S gas in acidic	Pb^{+2}	PbS	Black
	Medium	As ³⁺	As_2S_3	Yellow
		Cu ⁺²	CuS	Black
		Cd^{+2}	CdS	Yellow
III	NH ₄ Cl (s) in presence of	Fe ²⁺	Fe(OH) ₂	Light green
	NH ₄ OH	Fe ³⁺	Fe(OH) ₃	Reddish brown
		Al^{3+}	Al(OH) ₃	Gelatinous white
IV	H_2S gas in basic medium	Ni ²⁺	NiS	Black

		Co^{2+}	CoS	Black
		Mn^{2+}	MnS	Flesh colour
		Zn^{2+}	ZnS	Dirty white
V	$(NH_4)_2 CO_3$ in presence of NH_4OH	Ba^{2+}	BaCO ₃	White
		Ca^{2+}	CaCO ₃	White
		Sr^{2+}	SrCO ₃	White
VI	Na ₂ HPO ₄ in presence of NH ₄ OH	Mg^{2+}	MgNH ₄ PO ₄	White

EXPERIMENT – 3

Aim :- To analyse the given inorganic salt for acidic and basic radicals [(NH₄)₂ CO₃]

Preliminary Investigation	
Physical State	Solid
Colour	White $(Cu^{2+}, Fe^{2+}, Fe^{3+}, Ni^{2+}, Mn^{2+}, Co^{2+}absent)$
Odour	Ammonium smell (may be NH_4^+)
Solubility	Soluble in water
Flame Test	No Characteristic flame (Pb ²⁺ , Cu ²⁺ , Ca ²⁺ , Sr ²⁺ , Ba ²⁺ ,
	Zn^{2+} absent)

(A) Identification of Acidic Radical (a) Preliminary test :

Experiment	Observation	Inference	
1. Salt solution + dil H ₂ SO ₄	Colourless, colourless gas with brisk effervescence which turn lime water milky	Group A anion (CO_3^{2-}) may be present)	
Confirmative test :			
1. BaCl ₂ Test : Salt solution $+$	White ppt of BaCO ₃	CO_3^{2-} Confirmed	
$BaCl_2$			
2. $MgSO_4$ Test : Salt solution +	White ppt of MgCO ₃	CO_3^{2-} Confirmed	
$MgSO_4$			

(B) Identification of Basic Radical

a) Preliminary Test

Experiment	Observation	Inference
1. Salt Solution + NaOH+ Heat	Smell of NH ₃	
2. Place a red litmus on the mouth of test tube.	Red litmus turns blue	Zero group present $(NH_4^+ may be)$

Confirmative test

Experiment	Observation	Inference
1. Nessler's reagent test : Salt +	Reddish brown ppt. is formed	NH_{\perp}^+ confirmed.
Solution + NaOH + Nessler's Reagent		
2. NaOH test :	Smell of NH ₃	
Salt Solution + NaOH + Heat.	Dense white fumes of NH ₄ Cl are	
Bring a glass rod dipped in conc. HCl	formed.	NH_4^+ Confirmed.

Chemical Reactions : -Acidic Radical

Preliminary Test :-

1.
$$(NH_4)_2 CO_3 + H_2 SO_4 \longrightarrow (NH_4)_2 SO_4 + CO_2 \uparrow H_2 O$$

2.
$$Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O$$

- **Confirmative Test**
- 1. BaCl₂ Test :

$$(NH_4)_2CO_3 + BaCl_2 \rightarrow BaCO_3 \downarrow + 2NH_4Cl$$

2- MgSO₄
$$(NH_4)_2CO_3 + MgSO_4 \longrightarrow MgCO_3 \downarrow + (NH_4)_2SO_4$$

2. **Basic Radical** (a) Preliminary Test :-

	1. $(NH_4)_2CO_3 + 2NaOH \longrightarrow Na_2CO_3 + 2H_2O + 2NH_3 \uparrow$
	$NH_3 + Red$ litmus \rightarrow Litmus turns blue
	(b) Confirmative test :-
	1. Nessler's Test :
	$K_2HgI_4 \longrightarrow 2KI + HgI_2$ (Nessler's Respect)
	$HgI_2 + NH_3 \longrightarrow NH_2HgI + HI$
	$2NH_2HgI + H_2O \longrightarrow NH_2$
	/
	Hg
	$O + NH_4I$
	/
	Hg
	Ι
2.	NaOH Test
	$(NH_4)_2CO_3 + 2NaOH \longrightarrow Na_2CO_3 + 2H_2O + 2NH_3 \uparrow$
	$NH_3 \uparrow +HCl \longrightarrow NH_4Cl$ (Dense white fumes)
Result	: The given inorganic salt contains following
Acidic	Radical : - $CO_3^{2^-}$

Basic Radical : NH_4^+

EXPERIMENT – 4

Aim : To analyse the	he given s	alt of acidic and basic radical (NH ₄ Cl)
Preliminary Inves	tigation	
Physical state	:	Solid
Colour	:	white $(Cu^{2+}, Fe^{2+}, Fe^{3+}, Ni^{2+}, Mn^{2+}, Co^{2+}$ absent)
Odour	:	Ammonium smell (NH_4^+ may be present)
Solubility	:	Soluble in water
Flame Test		No characteristic flame (Cu^{2+} Ca^{2+} Ba^{2+} Sr^{2+} Pb^{+2} $7n^2$

No characteristic flame (Cu²⁺, Ca²⁺, Ba²⁺, Sr²⁺, Pb⁺², Zn²⁺absent) Flame Test

(A) **Identification of Acidic Radical**

a- Preliminary test:

	Experiment	Observation	Inference
1	Salt solution + dil H ₂ SO ₄ solution	No gas is evolved	Group A anion $\left(CO_3^{2-}, CH_3COO^{-}, NO_2^{-}, SO_3^{2-}, S^{2-}, absent\right)$
2	Salt + Conc H ₂ SO ₄ + Heat Bring a glass rod dipped in NH ₄ OH	Colourless gas with pungent smell which gives dense white fumes of NH ₄ Cl	Group B anion (Cl ⁻ may be)

(b) Confirmative Test:

	Experiment	Observation	Inference
1	AgNO₃ test : Salt Solution + AgNO ₃ .	Curdy white ppt	Cl ⁻ confirmed
	Dissolve the ppt in NH ₄ OH	White ppt soluble in NH ₄ OH	
2	Chromyl chloride Test: a) Salt + Solid $K_2Cr_2O_7$ (1:2) + conc. H_2SO_4 + Heat	Reddish orange gas is evolved	Cl [−] confirmed
	b) Pass these vapour through NaOHc) Add acetic acid and lead acetate to vellow solution	Solution be comes yellow Yellow ppt of lead chromate is formed	

Identification of Basic Radical

Preliminary Test:

	Experiment	Observation	Inference
1	Salt solution + NaOH +	Smell of Ammonia	Zero group (NH_4^+)
	Heat		May be
2	Place a red litmus on the	Red litmus turns	
	mouth of test tube	blue	

Confirmative Test:

	Experiment	Observation	Inference
1	Nessler Test: Salt solution + NaOH +	Reddish brown ppt is	NH ₄ ⁺ Confirmed
	Nessler's reagent	formed	
2	NaOH Test : Salt Solution + NaOH + Heat	Smell of NH ₃	NH ₄ ⁺ Confirmed
	Bring a glass rod dipped in dil HCl		
		white dense fumes of	
		NH ₄ Cl are formed	

Preliminary Test :

 $2NH_4Cl + H_2SO_4 \xrightarrow{Heat} (NH_4)_2SO_4 + 2HCl$

$$NH_4OH + HCl \rightarrow NH_4Cl + H_2O$$

(White donce fume)

(White dense fumes)

Confirmative Test :

AgNO₃ test $NH_4Cl + 2AgNO_3 \longrightarrow 2AgCl \downarrow + NH_4NO_3$ (Curdy white ppt)

$$(Curdy white ppt)$$

$$AgCl + NH_4OH \longrightarrow [Ag(NH_3)_2] Cl + 2H_2O$$
(Diammine silver (I) Chloride)

Chromyl Chloride Test :

 $K_{2}Cr_{2}O_{7} + H_{2}SO_{4} \longrightarrow K_{2}SO_{4} + 2Cr_{2}O_{3} + H_{2}O$ $2NH_{4} + H_{2}SO_{4} \longrightarrow (NH_{4})_{2}SO_{4} + 2HCl$ $CrO_{3} + 2HCl \longrightarrow Cr_{2}O_{2}Cl_{2} \uparrow + H_{2}O$

(Vapour)

 $CrO_2Cl_2 + 4NaOH \longrightarrow Na_2CrO_4 + 2NaCl + H_2O$ (Sodium Chromate (Yellow Solution)

$$Na_2CrO_4 + Pb(CH_3COO)_2 \xrightarrow[CH_3COOH]{all.} PbCrO_4 + CH_3COONa$$

(Lead Chromate)

Chemical Reaction for Basic Radical Preliminary Test :

> $NH_4Cl + NaOH \xrightarrow{\Delta} NaCl + H_2O + NH_3 \uparrow$ NH₃+ Red litmus ----- Litmus turns blue

Confirmative Test : Nessler's Test :

$$K_{2}HgI_{4} \longrightarrow 2KI + HgI_{2}$$

$$HgI_{2} + NH_{4} \longrightarrow NH_{2} HgI + HI$$

$$2NH_{2}HgI + H_{2}O \longrightarrow NH_{2} + NH_{4}I$$

$$/$$

$$Hg$$

$$\setminus$$

$$I (Iodide of millon base)$$

NaOH Test : NH₄Cl + NaOH \longrightarrow NaCl + H₂O + NH₃(g) $NH_3 + HCl \longrightarrow NH_4Cl$ (Dense white fumes)

Result : The given inorganic salt contains

Acidic Radical Cl⁻

Basic Radical NH₄⁺

EXPERIMENT - 5

Aim : To analyze the given inorganic salt for acidic and basic radical. Pb(NO₃)₂

Preliminary Investigation

:	Solid
:	Creamish white $(Cu^{2+}, Co^{2+}, Ni^{2+} Fe^{2+}, Mn^{2+} Fe^{3+} absent)$
:	No characteristic odour $(NH_4^+, S^{2-},$
	CH_3COO^- absent)
:	Soluble in water
:	Dull Bluish white flame is obtained (Pb ²⁺ may be)
	: : :

(A) Identification of Acidic Radical a- Preliminary test:

	Experiment	Observation	Inference
1	Salt solution + dil H ₂ SO ₄ solution	No gas is evolved	Group A $\left(CO_3^{2-}, CH_3COO^{-}, NO^{-}_2, SO_3^{2-}, S^{2-}, absent\right)$
2	Salt + $Conc^n H_2SO_4$ + Heat	Brown Colourled gas (NO ₂) is evolved	Group B (NO_3^- may be present)

(b) Confirmative test:

	Experiment	Observation	Inference
1	Diphenyl amine test :	Deep blue coloured	NO_3^- - confirmed
	salt + $Conc^n$ H ₂ SO ₄ + diphenyl amine	solution	
2	Ring Test :	Brown ring is formed at	NO_3^- - confirmed
	Salt + Freshly prepared $FeSO_4 + Conc^n$	the junction of two liquids	
	H ₂ SO ₄ along the side of the test tube		

Identification of Basic Radical

a- Preliminary test :

	Experiment	Observation	Inference
1	Salt solution + NaOH	No Smell of ammonia	Zero group $[NH_4^+]$ absent
2	Salt Solution + dil HCl	White ppt of PbCl ₂ is	I group [Pb ²⁺ may be]
	Filter the above ppt and boil it with water	formed	
	and divide into parts.		

Identification of Basic Radical

a- Confirmative test :

	Experiment	Observation	Inference
1	KI test : 1 st part + KI	Pb I ₂ (Yellow Ppt)	Pb ²⁺ Confirmed
2	$K_2CrO_4Test : 2^{nd} part + K_2CrO_4$	Yellow ppt of PbCrO ₄ is	Pb ²⁺ Confirmed
		formed	

Chemical reaction for Acidic Radical

Preliminary Test : Pb $(NO_3)_2 + H_2SO_4 \longrightarrow PbSO_4 + 2HNO_3$

 $Cu + HNO_3 \longrightarrow Cu(NO_3)_2 + 2 NO_2 + H_2O_3$

Confirmative Test :

i) Ring Test Pb $(NO_3)_2 + H_2SO_4 \longrightarrow PbSO_4 + 2HNO_3$ 6FeSO₄ + 3H₂SO₄ + 2HNO₃ \longrightarrow 3Fe₂ $(SO_4)_3 + 4H_2O + 2NO$

(Nitroso ferrous sulphate) ii) Diphenyl amine Test 2(C U) NU + (O) N N (C U) + U O			
ii) Diphenyl amine Test			
2(C, U) = N(U + IO) = N(C, U) = N(C, U) + UO			
$2(C_6\Pi_5)_2$ N Π + [O] \longrightarrow $(C_6\Pi_5)_2$ N - N $(C_6\Pi_5)_2$ + Π_2 O			
(Diphenyl amine hydrazine)			
(B) Identification of Basic Radical			
Preliminary Test : Pb (NO ₃) ₂ + 2HCl \longrightarrow PbCl ₂ \downarrow + 2HNO ₃			
(White)			
Confirmative Test :			
i) KI Test : $PbCl_2 + 2KI \longrightarrow PbI_2 \downarrow + 2KCI$			
ii) K_2CrO_4 Test : $PbCl_2 + K_2CrO_4 \longrightarrow PbCrO_4 \downarrow + 2KCl$			
(Yellow ppt.)			
Result : The given inorganic salt contains			
Acidic Radical NO_3^- Basic Radical Pb^{+2}			

EXPERIMENT – 6

Aim : To analyze the given inorganic salt for acidic and basic radical.[CuSO₄] **Preliminary Investigation**

Physical state	:	Solid
Colour	:	Blue (Cu ²⁺ may be)
Qdour	:	No characteristic odour (absence of NH_4^+ , S^{2-} , CH_3COO^-)
Solubility	:	Soluble in water.
Flame Test	:	Bluish green flame (Cu ²⁺ may be)

(A) Identification of Acidic Radical

a- Preliminary test :

	Experiment	Observation	Inference
1	Salt solution + dil H ₂ SO ₄ solution	No gas is evolved	Group A $\left(CO_3^{2^-}, S^{2^-}, SO_3^{2^-}, NO_2^- CH_3COO^- absent\right)$
2	Salt + $Conc^n H_2SO_4$ + Heat	No gas evolved	Group B anions $(Cl^-, Br^-, I^-, NO_3^-, C_2O_4^{2-} areabsent)$

(b) Confirmative test :

	Experiment	Observation	Inference
1	BaCl ₂ test : Salt Solution + BaCl ₂ Solution Add dil. HCl or dil HNO ₃	White Ppt formed	SO_4^{2-} confirmed
		Ppt remains insoluble	
2	Lead Acetate Test : -	White ppt. formed	SO_4^{2-} confirmed
	Salt Solution + lead acetate solution Add ammonium acetate Solution (CH_3COONH_4)	Ppt becomes soluble	
	to above ppt.		

Identification of basic Radical a- Preliminary test :

	Experiment	Observation	Inference
1	Salt solution + NaOH + heat	No smell of ammonia	Zero Group, $(NH_4^+ absent)$
2	Salt solution + dil . HCl	No white Ppt	Group I, (Pb ²⁺ absent)
3	Above solution $+ H_2S$ gas	Black Ppt is formed	Group II, $(Cu^{2+} / Pb^{2+} may be present)$
4	Dissolve above ppt in HNO ₃	Solution turms bluish green	
5	Divide the above solution in 2 parts.		

(b) Confirmative test :

	Experiment	Observation	Inference
1	NH_4OH test : 1 st part +	Deep bule colour	Cu ²⁺ confirmed
	NH ₄ OH		
2	Potassium ferrocynide test :	Chocolate brown	Cu ²⁺ confirmed
	IInd part + $K_4[Fe(CN)_6]$	ppt of Copper	
	_	ferrocyanide is	
		formed	

Acidic Radical

1- BaCl₂ Test: $CuSO_4 + BaCl_2 \rightarrow BaSO_4 \downarrow + CuCl_2$ (White Ppt) $2-(CH_3COO)_2$ Pb Test : $CuSO_4 + (CH_3COO)_2 Pb \rightarrow PbSO_4 \downarrow + 2(CH_3COO)_2 Cu$ (White Ppt) $PbSO_4 \downarrow +2CH_3COONH_4 \rightarrow (CH_3COO)_2 Pb + (NH_4)_2SO_4$ (b) Basic radical $Cu^{2+} + H_2S \rightarrow CuS + 2H^+$ Black ppt $3CuS + 8HNO_3 \longrightarrow Cu(OH)_2 + 2NO + 4H_2O + 3S$ 1. NH₄OH test $Cu(NO_3)_2 + 4NH_4OH \longrightarrow [Cu(NH_3)_4](NO_3)_4 + 4H_2O$ Deep blue ppt 2. $K_4[Fe(CN)_6 test$ $2Cu(NO_3)_2 + K_4[Fe(CN)_6] \rightarrow Cu_2[Fe(CN)_6] + 4KNO_3$

Result : The given inorganic salt contains. Acidic Radical – SO_4^{2-} Basic Radical Cu^{2+}

EXPERIMENT - 7

inorganic salt for acidic and basic radical.Al ₂ (SO ₄) ₃
Solid
White $(Cu^{2+}, Fe^{2+}, Fe^{3+}, Ni^{2+}, Mn^{2+}, Co^{2+}absent)$
No characteristic odour (absence of NH_4^+ , S^{2-} , CH_3COO^-)
Soluble in water.
No characteristics flame $(Pb^{+2}, Sr^{+2}, Cu^{2+}, Ca^{+2}, Ba^{+2}, Ni^{+2}, Zn^{2+}absent)$

(A) Identification of Acidic Radical a- Preliminary test:

	Experiment	Observation	Inference
1	Salt solution + dil H_2SO_4	No gas is evolved	Group A
			$\left(CO_{3}^{2-}, S^{2-}, SO_{3}^{2-}, NO_{2}^{-}, CH_{3}COO^{-}\right)$
			Absent
2	$Salt + Conc^{n} H_2SO_4 + Heat$	No gas evolved	Group B anions
			$(Cl^{-}, Br^{-}, I^{-}, NO_{3}^{-}, C_{2}O_{4}^{2} \ absent)$
3.	$Salt + BaCl_2$	White ppt is formed	Group C anion (SO_4^{2-} may be)

(b) Confirmative test :

	Experiment	Observation	Inference
1	$BaCl_2$ test :Salt Solution + $BaCl_2$	White Ppt	SQ_{\star}^{2-} confirmed
	Add dil HCl to above ppt	Ppt remains insoluble	~ ~ 4
2	Lead Acetate Test : -		
	Salt Solution + $(CH_3COO)_2$ Pb. solution	White ppt.	SQ^{2-}_{i} confirmed
	Add CH_3COO NH ₄ to above ppt.	Ppt dissolves in	
		ammonium acetate.	

B- Identification of Basic Radical

(a) Preliminary test :

	Experiment	Observation	Inference
1	Salt solution + NaOH +	No smell of NH ₃	Zero
	heat		Group, $(NH_4^+ absent)$
2	Salt solution + dil . HCl	No Ppt	Group I, (Pb ²⁺ absent)
3	To the above solution	No ppt.	Group II (Cd^{2+} , Pb^{2+} ,
	pass H_2S gas		As ²⁺ Cu ²⁺ absent)
4	Boil H_2S gas and add	White gelatinous	Group III (Al ³⁺ may be)
	$NH_4Cl + NH_4OH \&$	ppt.	
	divide the Solution in		
	two parts.		

(b) Confirmative test:

	Experiment	Observation	Inference
1	Take test : 1^{st} part + dil + HCl + 2 drops of	Blue ppt.floats over	Al ³⁺ confirmed
	blue litmus + NH_4OH	colourless solution	
2	Ammonium chloride Test :	Formation of white	Al ³⁺ confirmed
	IInd part + NH_4Cl + Boil the solution	gelatinous ppt.	

Acidic Radical

1. BaCl₂ test :

$$Al_{2}(SO_{4})_{3} + BaCl_{2} \longrightarrow BaSO_{4} \downarrow +2AlCl_{3}$$

White ppt
2. (CH_{3}COO)_{2} Pb test :

$$Al_{2}(SO_{4})_{3} + (CH_{3}COO)_{2} Pb \longrightarrow PbSO_{4} \downarrow +Al(CH_{3}COO)_{3}$$

White ppt

$$PbSO_{4} \downarrow +2CH_{3}COONH_{4} \longrightarrow (CH_{3}COO)_{2} Pb + (NH_{4})_{2}SO_{4}$$

Basic Radical

 $Al_{2}(SO_{4})_{3} + NH_{4}OH \longrightarrow Al(OH)_{3} \downarrow + (NH_{4})_{2}SO_{4}$ Al(OH)_{3} + 3HCl \rightarrow AlCl_{3} + 3H_{2}O AlCl_{3} + 3NH_{4}OH \longrightarrow Al(OH)_{3} \downarrow + 3NH_{4}Cl

EVALUATE: White ppt Result : The given inorganic salt contains. Acidic Radical – SO_4^{2-}

Basic Radical Al^{+3}

Aim : To analyze the given inorganic salt for acidic and basic radical. (ZnCl₂)

Preliminary Investigation				
Physical state	:	Solid		
Colour	:	White $(Cu^{2+}, Fe^{+2}, Fe^{+3}, Ni^{+2}, Mn^{+2}, Co^{+2} are absent)$		
Qdour	:	No characteristic above $(S^{2-}, NH_4^+, CH_3COO^-)$ absent		
Solubility Flame Test	: :	Soluble in water. Green flashes (Zn ²⁺ may be)		

(A) Identification of Acidic Radical a- Preliminary test :

	Experiment	Observation	Inference
1	Salt solution + dil H_2SO_4	No gas is evolved	Group A
			$(CO_3^{2-}, S^{2-}, SO_3^{2-}, NO_2^{-}, CH_3COO^{-} absent)$
2	Salt + Conc ⁿ H_2SO_4 + Heat	Colourless gas having	Group B anions
		pungent smell which	$(Cl^{-} may be)$
		gives white dense	
		fumes with glass rod	
		dipped in NH ₄ OH	

(b) Confirmative test :

	Experiment	Observation	Inference
1	Chromyl chloride test : Salt $+ K_2Cr_2O_7 (1 : 2) +$ conc. $H_2SO_4 +$ heat	Orangish red or reddish orange vapour of chromyl chloride are evolved	Cl [−] Confirmed
	Pass the vapour in a test tube containing NaOH solution Add $(CH_3COOH + (CH_3COO)_2 Pb$ into above solution	Yellow solution of Na_2CrO_4 is obtained Yellow ppt of lead chromate is formed	
2	AgNO ₃ Test : Salt Solution + AgNO ₃	White ppt.	Cl [−] confirmed
	Dissolve ppt. in NH ₄ OH	ppt becomes soluble.	

B- Identification of Basic Radical

(a) Preliminary test :

	Experiment	Observation	Inference
1	Salt solution + NaOH +	No smell of NH ₃	Zero Group,
	heat		$\left(NH_{4}^{+} absent \right)$
2	Salt solution + dil . HCl	No white Ppt	Group I (Pb ²⁺ absent)
3	To the above solution	No ppt.	Group II, $(Cu^{2+}, As^{+3},$
	pass H_2S gas		Cd^{+2} , Pb^{+2} absent)
4	Boil above solution to	No ppt.	Group III [Fe ²⁺ ,
	remove H_2S and add		Fe^{3+} , Al^{3+} absent]
	$NH_4Cl(s) + NH_4OH in$		
	exess.		
5	To above test tube pass	White ppt is	Group IV [Zn ²⁺ may
	H_2S gas	obtained	be]
	Dissolve the white ppt in		
	HCl and divide it into 2		
	parts.		

(b) Confirmative test :

	Experiment	Observation	Inference
1	$K_4[Fe(CN)_6]$ Test : 1 st part + $K_4[Fe(CN)_6]$	White ppt of zinc	Zn ⁺² conformed
		ferrocyanide	
2	NaOH Test : 2 nd part + NaOH	Bluish white ppt.	Zn ⁺² confirmed

Chemical reaction for Acidic Radical Preliminary Test : $ZnCl_2 + H_2SO_4 \longrightarrow ZnSO_4 + 3HCl \uparrow$

 $HCl + NH_4OH \longrightarrow NH_4Cl + H_2O$ (White dense fumes)

Confirmative Test :

i) Chromyl chloride test : $K_2Cr_2O_7 + H_2SO_4 \xrightarrow{\Delta} K_2SO_4 + 2Cr_2O_3 + H_2O$ $ZnCl_2 + H_2SO_4 \xrightarrow{\Delta} ZnSO_4 + 2HCl$ $CrO_3 + 2HCl \xrightarrow{\Theta} CrO_2Cl_2 \uparrow + H_2$ (red vapours of chromyl chloride) $CrO_2Cl_2 + 4NaOH \longrightarrow Na_2CrO_4 + 2NaCl + H_2O$ $Na_2CrO_4 + Pb(CH_3COO)_2 \xrightarrow{Dil.} PbCrO_4 + CH_3COONa$

ii) Silver Nitrate Test $ZnCl_2 + 2AgNO_3 \longrightarrow 2AgCl \downarrow +Zn(NO_3)_2$ (Curdy white ppt.)

 $AgCl + 2NH_4OH \longrightarrow [Ag(NH_3)_2]Cl + 2H_2O$

[Diammine silver (I) chloride) {Soluble complex]

Chemical reaction for Basic Radical

(a) Preliminary Test :

 $ZnCl_2 + H_2S \rightarrow ZnS \downarrow + 2HCl$

 $ZnS + 2HCl \rightarrow ZnCl_2 + H_2S \uparrow$

(b) Confirmative Test :

1 $K_4[Fe(CN)_6]Test: ZnCl_2 + K_4[Fe(CN)_6] \rightarrow Zn_2[Fe(CN)_6] \downarrow +4KCl$ 2. NaOH test : $ZnCl_2 + NaOH \longrightarrow Zn(OH)_2 + 2NaCl$

 $Zn(OH)_2 + 2NaOH \rightarrow Na_2ZnO_2 + 2H_2O$

Result : The given inorganic salt contains.

Acidic Radical Cl^- Basic Radical Zn^{+2}

EXPERIMENT – 9

Aim : To analyze the given inorganic salt for acidic and basic radical. (BaBr₂)

Preliminary Investigation

Physical state Colour	:	: White (Solid $(Cu^{2+}, Fe^{+2}, Fe^{+3}, Ni^{+2}, Mn^{+2}, CO^{+2} \text{ are absent})$
Qdour Solubility		: :	No characteristic adour $(NH_4^+, CH_3COO^-, S^{2-})$ absent Soluble in water.
Physical Test		:	Solid

(A) Identification of Acidic Radical a- Preliminary test:

	Experiment	Observation	Inference
1	Salt solution + dil H_2SO_4	No gas is evolved	Group A
			$(CO_3^2, S^{2-}, SO_3^{2-}, NO_2^-, CH_3COO^- absent)$
2	Salt + Conc H_2SO_4 + Heat	Reddish orange	Group B anion
		vapours which turns	(Br ⁻ may be)
		starch paper yellow	

(b) Confirmative test:

	Experiment	Observation	Inference
1	AgNO ₃ Test : Salt Solution $+$ AgNO ₃	Yellow ppt.	Br ⁻ confirmed
	Dissolve ppt. in NH₄OH	Ppt. remains partially	
		soluble	
2	MnO ₂ Test :	Orange red vapour of Br ₂	Br ⁻ confirmed
	Salt Solution + MnO_2 + Conc. H_2SO_4 + Heat		

B- Identification of Basic Radical

(a) Preliminary test:

	Experiment	Observation	Inference
1	Salt solution + NaOH + heat	No smell of NH ₃	Zero Group, $(NH_4^+ absent)$
2	Salt solution + dil . HCl	No white Ppt	Group I (Pb ²⁺ absent)
3	To the above solution pass H ₂ S gas	No ppt.	Group II (Cu^{2+} , As^{+3} , Cd^{+2} , Pb^{+2} absent)
4	Boil above solution to remove H_2S and add $NH_4Cl(s) + NH_4OH$ in exess.	No ppt.	Group III [Fe ²⁺ , Fe ³⁺ ,Al ³⁺ absent]
5	To above test tube pass H ₂ S gas	No ppt	Group IV [Zn ²⁺ , Co ⁺² , Ni ⁺² , Mn ⁺² absent]
6	Remove H_2S gas by boiling. Add $[NH_4]_2$ CO ₃ to it.	White ppt	V group (Ca^{2+} , Ba^{2+} , Sr^{2+} may be)

(b) Confirmative test:

	Experiment	Observation	Inference
1	Potassium chromate test : 1^{st} part + K ₂ CrO ₄	Yellow ppt	Ba ²⁺ confirmed
2	Ammonium sulphate Test	No ppt	Sr ²⁺ absent
	: IInd part + $(NH_4)_2SO_4$		
3	Ammonium oxalate Test:	No ppt	Ca ²⁺ absent
	IIIrd part + ammonium oxalate test $(NH_4)_2C_2O_4$		
4.	Flame test : Perform flame	Apple green flame	Ba ²⁺ confirmed
	test with salt.		

Chemical reaction for Acidic Radical Preliminary Test: $BaBr_2 + H_2SO_4 \longrightarrow BaSO_4 + 2HBr$ $H_2SO_4 + 2HBr \longrightarrow SO_2 + Br_2 \uparrow + 2HCl$

 $Starch + Br_2 \longrightarrow Yellow Colour$ Confirmative Test:

i) Silver Nitrate test		
$BaBr_2 + 2AgNO_3 \longrightarrow Ba(NO_3)_2 + 2AgBr_3$	\downarrow	
(Yellow	ppt)	
ii) MnO ₂ Test :- $BaBr_2 + MnO_2 + 2H_2SO_4 - $	$\longrightarrow BaSO_4 + MnSO_4 + 2H_2O + Br_2$	
Chemical reaction for Basic Radical		
Preliminary Test :		
$BaBr_2 + (NH_4)_2 CO_3 \rightarrow BaCO_3 \downarrow + 2NH_2$	$_4Br$	
$BaCO_3 + 2CH_3COOH -$	$\longrightarrow (CH_3COO)_2Ba + CO_2 \uparrow + H_2O$	
Confirmative Test : $(CH_3COO)_2Ba + K_2CrO_4 \longrightarrow 2CH_3COOK + BaCrO_4 \downarrow$		
$1K_2CrO_4$ Test :	(Yellow ppt)	
Result : The given inorganic salt contains.	Acidic Radical Br ⁻	
	Basic Radical Ba ²⁺	

EXPERIMENT – 10

Aim : To analyze the given inorganic salt for acidic and basic radical. $(NH_4)_2C_2O_4$ Preliminary InvestigationPhysical state:SolidColour:White $(Cu^{2+}, Fe^{+2}, Fe^{+3}, Ni^{+2}, Mn^{+2}, Co^{+2} are absent)$ Qdour:No characteristic adour
 $(NH_4^+, S^{2-}, CH_3COO^-absent)$ Solubility:Soluble in water.

Flame Test : No characteristic flame $(Ca^{+2}, Sr^{+2}, Ba^{+2}, Pb^{+2}, Cu^{+2}, Zn^{+2} absent)$

(A) Identification of Acidic Radical a- Preliminary test :

	Experiment	Observation	Inference
1	Salt solution + dil H ₂ SO ₄ + heat	No gas is evolved	Group A $\left(CO_3^{2-}, S^{2-}, SO_3^{2-}NO_2^{-}CH_3COO^{-}absent\right)$
2	$Salt + Conc^{n}$ $H_2SO_4 +$ Heat	Colourless, odourless, mixture of gas which turns time water milky & burns on the mouth of test tube water with blue flame	Group B $(C_2 O_4^{2-}, may be)$

(b) Confirmative test :

	Experiment	Observation	Inference
1	Calcium Chloride Test :	White ppt. of calcium	$(C_2 Q_1^{2-})$ confirmed
	Salt Solution + $CaCl_2$	oxalate is formed	
2	KMnO ₄ Test :	Pink colour of KMnO ₄ is	$(C_2 O_4^{2-})$ Confirmed
	Above ppt + dil H_2SO_4 + Heat	discharged with evolution	
	Add very dil solution of KMnO ₄	of CO_2 gas.	

B- Identification of Basic Radical

(a) Preliminary test:

	Experiment	Observation	Inference
1	Salt solution + NaOH +	Smell of NH ₃	Zero Group,
	heat		$(NH_{1}^{+} present)$
	Place red litmus paper on	Red litmus turns	
	mouth to test tube	blue	

(b) **Confirmative test:** Experiment **Observation** Inference 1 To above solution, bring on glass rod dipped White dense of NH₄Cl are (NH_{4}^{+}) confirmed in conc. HCl near mouth of test tube. formed 2 Nessler's Test : Solution + NaOH + Reddish brown ppt is (NH_4^+) confirmed Nessler's reagent formed

Chemical reaction for Acidic Radical Preliminary Test :

 $(NH_{4})_{2}C_{2}O_{4} + H_{2}SO_{4} \longrightarrow H_{2}C_{2}O_{4} + (NH_{4})_{2}SO_{4}$ $H_{2}C_{2}O_{4} \longrightarrow CO_{2} \uparrow + CO + H_{2}O$ Confirmative Test : i) CaCl₂ test $(NH_{4})_{2}C_{2}O_{4} + CaCl_{2} \longrightarrow CaC_{2}O_{4} \downarrow + 2NH_{4}Cl$ Calcum oxalate (White ppt) ii) KMnO_{4} Test :- $\frac{CaC_{2}O_{4} + H_{2}SO_{4} \longrightarrow H_{2}C_{2}O_{4} + CaSO_{4}}{2KMnO_{4} + 3H_{2}SO_{4} \longrightarrow 2MnSO_{4} + H_{2}SO_{4} + 3H_{2}O + 5[O]$

$$H_2C_2O_4 + [O] \xrightarrow{hot}{sol^n} 2CO_2 + H_2O$$

Basic Radical a) Preliminary test

Result : The given inorganic salt contains. Acidic Radical – $C_2 O_4^{2-}$

Basic Radical $\left(NH_4^+\right)$

EXPERIMENT – 11

Aim : To analyze the given inorganic salt for acidic and basic radical. **Preliminary Investigation**

Physical state	:	Solid
Colour	:	Green (Ni ²⁺⁻ may be)
Qdour	:	No characteristic odour
		(absence of CH_3COO^- , $NH_4^+S^{2-}$)
Solubility	:	Soluble in water.
Flame Test	:	No Characteristic flame

[absence of Cu^{2+} , Pb^{+2} , Zn^{2+} , Cu^{2+} , Br^{+2})

(a) Identification of Acidic Radical

a- Prelimi<u>nary test :</u>

	Experiment	Observation	Inference
1	Salt solution +	No gas is	Group A
	dil HCl	evolved	$(CO_3^{2-}, S^2, SO_3^{2-} NO_2^- CH_3 COO^- abser$
2	$Salt + Conc^n$	Colourless	Group B anions
	$H_2SO_4 + Heat$	pungent	Cl [−] may be present
		smelling gas	
		(HCl) is	
		evolved	
		which gives	
		white dense	
		fumes of	
		NH ₄ Cl.	

(b) Confirmative test :

	Experiment	Observation	Inference
1	AgNO ₃ Test :	Curdy white ppt	Cl ⁻ confirmed
	Salt Solution + $AgNO_3$		
	Dissolve ppt. in NH ₄ OH	Ppt become soluble	
2	Chromyl chloride test : Salt + $Kr_2Cr_2O_7(s)$	Reddish orange vapours	
	(1:2) + conc. H ₂ SO ₄ + heat	of chromyl chloride are	
		evolved	Cl confirmed
	Pass the vanour in a test tube containing	Solution becomes Vellow	
	NH ₄ OH	Solution becomes Tenow	
	Add $(CH_3COOH + Pb(CH_3COO)_2)$	Yellow ppt of lead	
		chromate is formed	

B- Identification of Basic Radical Preliminary test •

1 I Chilli			
	Experiment	Observation	Inference
1	Salt solution + NaOH +Heat	No smell of NH ₃	Zero Group, $(NH_4^+ absent)$
2	Salt solution + dil . HCl	No white Ppt	Group I, Pb ²⁺ absent
3	Pass H ₂ S gas through above NH ₄ Cl	No ppt.	Group II,
			$(Cu^{2+}, As^{+3}, Cd^{+2}, Pb^{+2})$ absent
4	Remove H_2S gas by boiling & add NH_4Cl (s)	No ppt.	Group III [Fe ²⁺ , Fe ³⁺ ,Al ³⁺ absent
	+ NH_4OH in excess.]
5	Pass H ₂ S gas through above solution	Black ppt.	Group IV [Ni ⁺² or Co ⁺² May be
	Dissolve the ppt by boiling with aqua regia		present]
	[Conc HCl + Conc. HNO ₃] evaporate to		
	dryness & add water & divide in 2 parts.		

(b) Confirmative test :

	Experiment	Observation	Inference
1	DMG test : I part + DMG	Rose pink ppt.	Ni ⁺² conformed
2	NaOH Test : 2^{nd} part + NaOH	Apple green ppt	Ni+ confirmed

 $NiCl_2 + H_2SO_4 + heat \longrightarrow NiSO_4 + 2HCl \uparrow$ $NH_4OH + HCl \longrightarrow NH_4Cl + H_2O$ (White dense fumes) **Confirmative Test :** $NiCl_2 + 2AgNO_3 \longrightarrow 2AgCl \downarrow + Ni(NO_3)_2$ i) AgNO₃ test Curdy white ppt $AgCl + 2NH_4OH \longrightarrow [Ag(NH_3)_2]Cl + H_2O$ (Diammine Silver (I) Chloride) 2) Chromyl chloride test (i) $4NiCl_2 + K_2Cr_2O_7 + 7H_2SO_4 \xrightarrow{\Delta} 2KHSO_4 + 2CrO_2Cl_2 + 3H_2O + 2NiHSO_4$ $Cr_2O_2Cl_2 + 4NaOH \xrightarrow{\Lambda} Na_2CrO_4 + 2NaCl + H_2O$ (Sodium Chromate) $Pb(CH_{3}COO)_{2} + Na_{2}CrO_{4} \longrightarrow PbCrO_{4} + 2CH_{3}COONa$ Yellow Ppt **Identification of Basic Radical** $NiCl_2 + H_2S \longrightarrow NiS \downarrow + 2HCl$ **Preliminary Test :** (black ppt.)

 $3NiS + 2HNO_3 + 6HCl \longrightarrow 3NiCl_2 + 2NO + 3S + H_2O$

Confirmative Test : i) DMG test

$$\begin{array}{rclcrcl} CH_3 & - & C & = & N & - & OH \\ & & & & & \\ & & & & \\ & & & & \\ CH_3 & - & C & = & N & - & OH \end{array} \\ & & & & & \\ H_3 & - & C & = & N & - & OH \end{array}$$

(ii) NaOH Test : $NiCl_2 + 2NaOH \longrightarrow Ni(OH)_2 + 2NaCl$ Result : The given inorganic salt contains.

Acidic Radical Cl^{-} Basic Radical Ni⁺²

EXPERIMENT – 12

Aim : To prepare 250 ml of 0.02 M (M/50) Mohr's Salt solution.

Apparatus Required : Chemical balance, weight box, beaker (250 ml), watch glass, volumetric flask (250 ml) glass rod, funnel, test tube.

Chemical required :-Mohr's salt, conc. H2SO4, Distilled water.Theory :Molecular formula of Mohr's salt – FeSO4[NH4]2SO4.6H2O
It is primary standard, hence is solution can be prepared by direct weighing.
Molecular weight of Mohr's salt : $56+32+4\times16+2(14+4)+32+4\times16+6\times18 = 392$ g.
Thus to prepare 1000 ml of 1M Mohr's salt solution, 392 g of Mohr's salt is needed. To prepare
250ml of 1 M Mohr's salt $\frac{392}{1000} \times 250$ ie $\frac{392}{4}$ g of mohr's salt is need.
To prepare 250 ml of 0.02 of Mohr's salt solution
 $\left(\frac{392}{4} \times 0.02\right)g$ of salt is needed. Mohr's salt required = 1.9600 g of mohr's salt.

Observation :

1- Weight of empty watch galss $(W_1) = 21.7200 \text{ g}$

- 2- Weight of empty watch glass + mohrs salt $(W_2) = 21.7200 + 1.9600 = 23.6800$ g
- 3- Weight of Mohr's Salt $[W_2 W_1] = 23.6800 21.7200 = 1.9600$ g
- 4- Volume of solution = 250 ml.
- 6. Morality of solution = M/50

Result : 250 ml of M/50 solution of Mohr's salt is prepared.

Precautions :

- 1- Add 2-3 ml of conc. H₂SO₄ to prevent hydrolysis of FeSO₄ before making solution of 250 ml.
- 2- Weighing should be done accurately.
- 3. Apparatus should be clean.

EXPERIMENT – 13

Aim : To prepare a standard solution of M/50 Mohr's salt solution. With its help, determine molarity and strength of $KMnO_4$ Solution.

Apparatus Required : Burette, comical flask, pipette, burette stand, test tube, white tile, watch glass, volumetric flask (250ml) beaker, funnel glass rod, weight box, wash bottle.

Chemical Required :

Mohr's Salt, $KMnO_4$ solution, dil H_2SO_4 , conc. H_2SO_4 and water.

Theory :

(a) Preparation of standard or known solution of M/50 Mohr's salt solution - Mohr's salt is a primary standard solution. Hence its can be prepared by direct weighting.

Molecular weight of mohr's salt : 392 g/mol

Thus to prepare 1000 ml of 1M Mohr's salt solution,

392 g of Mohr's salt is needed.

To prepare 250ml of 1 M Mohr's salt $\frac{392}{100} \times 250$ ie $\frac{392}{4}$ g of mohr's salt is need.

To prepare 250 ml of 0.02 of Mohr's salt solution $\left(\frac{392}{4} \times 0.02\right)g$ of salt is needed. Mohr's salt required = 1.9600 g

of mohr's salt.

(b) Titration of Mohr's salt Sol (standard solution) with $KMnO_4$ (unknown solution) - $KMnO_4$ is strong and versatile oxidizing agent. When its treated with Mohr's salt solution in sufficiently acidic medium Fe^{2+} ion are oxidised to Fe^{3+} in cold according to reaction :

Ionic equation :

 $MnO_4^- + 5Fe^{+2} + 8H^+ \longrightarrow Mn^{2+} + 5Fe^{+3} + 4H_2O$ Molecular equation

$2KMnO_4 + 3H_2SO_4 \longrightarrow K_2SO_4 + 2MnSO_4 + 3H_2O + 5[O]$

 $5[[2FeSO_4.(NH_4)_2SO_4.6H_20] + H_2SO_4 + [O] \longrightarrow Fe_2(SO_4)_3 + 2(NH_4)_2SO_4 + 13H_2O)]$ Adding both equation

 $2KMnO_4 + 8H_2SO_4 + 10FeSO_4 \cdot (NH_4)_2SO_4 \longrightarrow 2K_2SO_4 + 2MnSO_4 + 5Fe_2(SO_4)_3$

 $+10(NH_4)_2SO_4+68H_2O$

Indicator \longrightarrow KMnO₄ is a self indicator

End point \longrightarrow colourless to pink

Observations:-

1.

Preparation of standard solution :-Weight of empty water glass (W₁) 21.7200 g Weight of watch glass + Mohr's salt (W₂) = 23.6800 g Weight of Mohr's salt = W₂ - W₁ = (23.6800 - 21.7200) g = 1.9600 g Volume of mohr's salt = 250 ml Volume of mohr's salt taken for each titration (V₂) = 20 ml

2. Titration of standard solution with KMnO₄ Solution :-

S.no.	Volume of Mohr's salt used (V1) ml	Burette initial	Reading final	Volume of KMnO ₄ used	Concordant Reading
1	20ml	0.0	14.8	14.8	
2	20 ml	0.0	14.6	14.6	14.6

3	20 ml	0.0	14.6	14.6	
---	-------	-----	------	------	--

Calculation :

$$M_{1}V_{1} = \frac{1}{5}M_{2}V_{2}$$

$$M_{1} \times 14.6 = \frac{1}{5} \times \frac{M}{50} \times 20$$

$$M_{1} = 0.0068 \text{ M}$$
Strength = 158 × M = 158 × 0.0068 M = 1.0744 g/l
Result

1. Molarity of the given solution = 0.0068 M

2. Strength of the given solution = 1.0744 g/l

Precaution :

- 1. Weighting should be accurate.
- 2. Add 2 3 ml of conc H₂SO₄ to prevent hydrolysis of Mohr's Salt solution.
- 3. While titrating, the funnel should not be placed at the top of the burette.

EXPERIMENT – 14

Aim : To prepare solution of M/30 (250 m*l*) Mohr's salt solution. With its help, determine molarity and strength of $KMnO_4$ solution.

Apparatus Required : Burette, conical flask, pipette, burette stand, test tube, white tile, watch glass, volumetric flask (250ml) beaker, funnel glass rod, weight box, wash bottle.

Chemical Required :

Mohr's Salt, [FeSO₄. (NH₄)₂ SO₄.6H₂O] ,KMnO₄ , dil H₂SO₄, conc. H₂SO₄ Indicator : KMnO₄ is a self indicator End point : Colourless to pink

Theory :

(a) Preparation of standard solution of M/30 mohr's salt

 $Molecular \ formula \ of \ mohr's \ salt: FeSO_4.(NH_4)_2 \ SO_4.6H_2O. \ mohr's \ salt \ is \ a \ primary \ standard \ . \ Hence \ its \ solution \ can be \ prepared \ by \ direct \ weighing.$

Thus to prepare 1000 ml of 1M Mohr's salt solution, 392 g of Mohr's salt is needed.

To prepare 250ml of 1 M Mohr's salt $\frac{392}{1000} \times 250$ ie $\frac{392}{4}$ g of mohr's salt is need.

Thus to prepare 250 ml of M/30 mohr's salt solution, $392/4 \times 1/30$ i.e, 3.2670 g of mohr's salt is needed. (b) Titration of Mohr's salt Sol (standard solution) with KMnO₄ (unknown solution), KMnO₄ is strong and versatile oxidising agent . When its treated with mohr's salt solution in sufficiently acidic medium, Fe²⁺ ion are oxidise to Fe³⁺ according to reaction.

Ionic equation : $MnO_4^- + 5Fe^{+2} + 8H^+ \longrightarrow Mn^{2+} + 5Fe^{+3} + 4H_2O$ Molecular equation : $2KMnO_4 + 3H_2SO_4 + \longrightarrow K_2SO_4 + 2MnSO_4 + 3H_2O + 5(O)$ $[2FeSO_4(NH_4)_2SO_4.6H_2O + H_2SO_4 + [O] \longrightarrow Fe_2(SO_4)_3 + 2(NH_4)_2SO_4 + 13H_2O] \times 5$ Adding both the Eqn. $2KMnO_4 + 8H_2SO_4 + 10FeSO_4.(NH_4)_2SO_4.6H_2O \longrightarrow K_2SO_4 + 2MnSO_4$ $+ 5Fe_2(SO_4)_3 + 10(NH_4)_2SO_4 + 68H_2O$ Observation Table:-1. Preparation of standard solution:-Weight of empty watch glass (W₁) 21.7200 g Weight of watch glass + Mohr's salt (W₂) = 21.7200+3.2670 = 24.9870g

Weight of Mohr's salt = $W_2 - W_1$ = 24.9870-217200 = 3.2670 g Volume of mohr's salt = 250 ml

Molarity of mohr's salt = M/30

2. Titration of standard solution with KMnO₄ Solution :-

$M_1 = Molarity of KMnO_4 Sol^n = ?$
$V_1 = Volume of KMnO_4 Sol^n = 14.6 ml$
M_2 = Molarity of Mohr's Salt Sol ⁿ = M/50
V_2 = Volume of Mohr's Salt Sol ⁿ = 20 ml

S.no.	Volume of Mohr's salt	Burette Reading		Volume of KMnO4 used	Concordant Reading
	used (V ₁) ml	Initial	Final		
1	20ml	0.0 <i>ml</i>	14.4 <i>ml</i>	14.4 <i>ml</i>	
2	20 ml	0.0 ml	14.2 ml	14.2 ml	14.2 ml
3	20 ml	0.0 ml	14.2 ml	14.2 ml	

Calculation : According to ionic eq.

$$MnO_{4}^{-} + 5 Fe^{2+} + 8H^{+} \longrightarrow Mn^{2+} + 5Fe^{3+} + 4H_{2}O$$

5 moles of mohr's salt = 1 mole of $KMnO_4$

$$M_1 V_1 = \frac{1}{5} M_2 V_2$$

 M_1 = Molarity of KMnO₄ = ? $V_1 = Volume of KMnO_4 = 14.2 ml$ M_2 = Molarity of Mohr's salt solution = M/30 V_2 = Volume of Mohr's salt solution = 20 ml $M_1 \times 14.2 = \frac{1}{2} \times \frac{M}{2} \times 20$

$$M_1 = \frac{1}{5} \times \frac{M}{30} \times \frac{20}{14.2} = 0.00938M$$

Strength of $KMnO_4 = molarity \times mol.wt.$ of $KMnO_4$.

0.00938 ×158 =

Result

Morality of the given $KMnO_4$ solution = 0.00938 M 1.

2. Strength of the given $KMnO_4$ solution = 1.48204 g/L

Precaution :

- Weighting should be accurate. 1.
- Add 2 3 ml of conc. H₂SO₄ to prevent hydrolysis of Mohr's Salt solution during preparation of standard 2. solution.
- 3. In case of coloured solution (KMnO₄) upper meniscus is read.

EXPERIMENT – 15

Aim : To prepare solution of M/40 oxalic acid. With its help determine the molarity and strength of given KMnO₄ solution.

Apparatus Required : Burette, conical flask, pipette, beaker (250 ml), test tube, white tiles, volumetric flask, beaker, funnel, glass rod, weight box, wash bottle.

Chemical Required : Oxalic acid, crystal, dil H₂SO₄, KMnO₄ solution

Indicator : KMnO₄ act as a self indicator.

End point : Colourless to Pink

Theory :

(a) Preparation of standard or known solution :-

Molecular formula of oxalic acid is H₂C₂O₄.2H₂O. It is a primary standard solution. thus its solution can be prepared by direct weighing.

Molecular weight of oxalic acid = 126 g

To prepare 250 ml of 1M oxalic acid solution, 126 of oxalic acid is required. Thus to prepare 250 ml of 1M oxalic acid solution (126/4)g is oxalic acid is required.

To prepare 250 ml of M/40 oxalic acid solution.

 $\frac{\pi}{40} = 0.7876g$ of oxalic acid is needed 4

(b) Titration of standard solution with KMnO₄ (unknown solution), KMnO₄ is strong and versatile oxidising agent. In sufficiently acidic medium, at about 60°C KMnO₄ oxidises oxalic acid to CO₂ and itself is reduced into colourless Mn²⁺ ion.

$$2MnO_4^- + 5C_2O_4^{2-} + 16H^+ \longrightarrow 2Mn^{2+} + 10CO_2 + 8H_2O$$

Molecular equation :-

 $2KMnO_4 + 3H_2SO_4 \longrightarrow K_2SO_4 + 2MnSO_4 + 3H_2O + 5[O]$ $H_2C_2O_4 + [O] \longrightarrow 2CO_2 + H_2O] \times 5$ Adding both the eqn. $2KMnO_4 + 3H_2SO_4 + 5H_2C_2O_4 \longrightarrow K_2SO_4 + 2MnSO_4 + 8H_2O + 10CO_2$

Observation Table :-

1. Preparation of M/40 standard solution :-Weight of empty watch glass (W_1) 21.7260 g Weight of watch glass + Mohr's salt (W_2) = 21.7200+ 0.7876 = 22.5076 g Weight of oxalic acid = $W_2 - W_1$ = 0.7876 g Volume of oxalic acid = 250 ml Molarity of oxalic acid = M/40

2. Titration of standard solution with KMnO₄ Solution :-

S.no.	Volume of Mohr's salt	Burette Reading		Volume of KMnO₄ used	Concordant Reading
	used (V ₁) ml	Initial	final		
1	20ml	0.0 ml	15.0 ml	15.0 ml	
2	20 ml	0.0 ml	14.9 ml	14.9 ml	14.9 ml
3	20 ml	$0.0 \ ml$	14.9 ml	14.9 ml	

Calculation : According to ionic equation .

$$2MnO_4^- + 5C_2O_4^{2-} + 16H^+ \longrightarrow 2Mn^{2+} + 10CO_2 + 8H_2O$$

 \therefore 1 mole of oxalic acid required 2/5 mole of KMnO₄.

$$\therefore M_1V_1 = 2/5 \ M_2V_2$$

 M_1 = molarity of KMnO₄ solution = ?

- V_1 = molarity of KMnO₄ solution = 14.9 ml
- $M_2 = molarity \ of \ oxalic \ acid \ solution = M/40$

 V_2 = volume of oxalic acid solution. = 20 ml

$$M_1 \times 14.9 = \frac{2}{5} \times \frac{1}{40} \times 20 \Longrightarrow M_1 = 0.0135M$$

Strength of KMnO₄ = Molarity × Mol.wt.= 0.0135 M × 158 = 2.1345 g/L Result

1. Molarity of the given $KMnO_4$ solution = 0.0135 M

2. Strength of the given $KMnO_4$ solution = 2.1345 g/L

Precaution:

- 1. Oxalic acid should not be heated about 60° C.
- 2. weighing should be accurate.

EXPERIMENT - 16

Aim : To prepare solution of M/20 oxalic acid with its help determine the morality and strength of given KMnO₄ solution.

Apparatus Required : Burette, conical flask, pipette, beaker, test tube, weight box, white tiles, volumetric flask beaker, funnel glass rod, weight box, wash bottle.

Chemical Required : Oxalic acid, crystal, dill H₂SO₄, KMnO₄ solution

Indicator : KMnO₄ act as a self indicator.

End point : Colourless to Pink

Theory :

(a) Preparation of standard or known solution :-

Molecular formula of oxalic acid is $H_2C_2O_4.2H_2O$. It is a primary standard solution. Thus its solution can be prepared by direct weighting.

Molecular weight of oxalic acid = 126 g

 \therefore molar mass = 126 g/l

To prepare 1000 ml of 1M oxalic acid solution, 126 of oxalic acid is required

To prepare 250 ml of 2M oxalic acid solution (126/4)g is oxalic acid is required.

 \therefore To prepare 250 m*l* of M/20 oxalic acid solution.

 $\frac{126}{4} \times \frac{1}{20} = 1.5750g \text{ of oxalic acid is needed}$

(b) Titration of standard solution with KMnO₄ (unknown solution): KMnO₄ is strong and versatile Oxidizing agent. When it is titrated against standard oxalic acid solution (reducing agent) in sufficiently acidic medium at above 60°C, KMnO₄ oxidizes acid into CO₂ and itself gets reduced to colourless Mn⁺²ions.

Molecular Equation :

 $2KMnO_4 + 3H_2SO_4 \longrightarrow K_2SO_4 + 2MnSO_4 + 3H_2O + 5[O]$ $H_2C_2O_4 + [O] \longrightarrow 2CO_2 + H_2O] \times 5$

Adding both equation : $2KMnO_4 + 3H_2SO_4 + 5 \text{ COOH} \cdot 2H_2O \rightarrow K_2SO_4 + 2MnSO_4 + 8H_2O + 10CO_2$ Ionic equation : $MnO_4^- + 8H^+ + 5e^{(-)} \longrightarrow Mn^{2+} + [4H_2O] \times 2$

$$C_2O_4^{2-} \longrightarrow 2CO_2 + 2e^{-}] \times 5$$

$$2KMnO_4^{-} + 16H^{+} + 5C_2O_4^{2-} \longrightarrow 2Mn^{2+} + 8H_2O + 10CO_2$$

Observation Table :

a) Preparation of M/20 oxalic acid solution :

Weight of water glass $(W_1) = 21.7200g$ Weight of watch glass + weight of oxalic acid $(W_2) = 23.2950 g$ \therefore weight of oxalic acid $(w_2 - w_1) = 1.5750g$ Volume of oxalic acid used for each titration = 250 m*l*.

3. Titration of standard solution with unknown Solution :-

S.no.	Volume of Mohr's salt used (V ₁) ml	Burette	Reading	Volume of KMnO ₄ used	Concordant Reading
1	2.0 ml	$0.0 \ ml$	15.1 ml	15.1 ml	
2	2.0 ml	0.0 ml	14.8 ml	14.8 ml	14.8 ml
3	2.0 ml	0.0 ml	14.8 ml	14.8 ml	

Calculation : According to the ionic eq.

$$2MnO_4^- + 5C_2O_4^{2-} + 16H^+ \longrightarrow 2Mn^{2+} + 10CO_2 + 8H_2O$$

$$\therefore 1 \text{ mole of oxalic acid required } 2/5 \text{ mole of KMnO}_4.$$

$$\therefore M_1V_1 = 2/5 M_2V_2$$

$$\frac{2}{7} \times \frac{M}{20} \times \frac{20}{1+0} = 0.027M$$

 $\frac{-5 \times 20}{5} \times \frac{14.8}{14.8} = 0.027 \text{ M}$ Strength of KMnO₄ used = Molarity × molar mass = $0.027 \times 158 = 4.2702 \text{ g/l}$ Result

1. Molarity = 0.0270 M

2. Strength = 4.2702 g/L

Precaution :

1. Weighting should be accurate .

2. Always remove funnel from burette while titrating the solution.

EXPERIMENT - 17

Aim : To identify the functional group in the given organic compound.

Apparatus Required : Test tube, test tube stand, test tube holder, dropper, litmus (blue), NaHCO₃, conc. H_2SO_4 , NH₄OH, FeCl₃.

Physical Properties:

$$\begin{split} M_1 &= Molarity \text{ of } KMnO_4 \text{ Sol}^n = ?\\ V_1 &= Volume \text{ of } KMnO_4 \text{ Sol}^n = 14.8 \text{ ml}\\ M_2 &= Molarity \text{ of } Oxalic \text{ acid } Sol^n = M/20\\ V_2 &= Volume \text{ of } Oxalic \text{ acid } Sol^n = 20 \text{ ml} \end{split}$$

State:SolidColour:WhiteOdour:Vinegar LikeFlammability:Burn with non sooty flame (Aliphatic)

Preliminary test :

S.no.	Experiment	Observation	Inference
1	Litmus test :	Litmus solution turns from	-COOH or – OH may be
	Organic compound + 2 drops of litmus solution.	blue to red.	present
2	Organic compound + NaHCO ₃ solution.	Colourless, odorless gas	-COOH group may be or –
		with brisk effervescence.	OH (phenol group present.

Confirmatory test :

S.no.	Experiment	Observation	Inference
1	Ester test :	Fruity smell of	
	Organic compound +	ester	∥ grp
	$C_2H_5OH + \text{conc. }H_2SO_4$ + Heat		-C - OH
			confirmed.
2	FeCl ₃ Test : Organic	Red colour	0
	$compound + dil FeCl_3$	appear	Ш
	solution.		-C - OH
			confirmed

Chemical Reaction : NaHCO₃ Test : RCOOH + NaHCO₃ \longrightarrow RCOONa+CO₂ \uparrow + H₂O

Easter Test :
$$RCOOH + R - OH \xrightarrow{conc.} RCOOR' + H_2O$$

(Fruity smell ester)

FeCl₃ Test : RCOOH + NH₄OH \longrightarrow RCOONa

 $RCOONa + H_2O \longrightarrow Ammoniac \ salt \ (Soluble)$

 $RCOONH_4 + FeCl_3 \longrightarrow (RCOO)_3 Fe + 3NH_4Cl$

 $(\text{RCOO}_3)\text{Fe} + \text{H}_2\text{O} \longrightarrow \text{Fe}(\text{OH}) (\text{R COO})_2 + \text{RCOOH}$

Basic ferric acetate.

Result :

The functional group present in the given organic compound is carboxylic acid

$$\begin{pmatrix} O \\ \| \\ - C & - OH \end{pmatrix}$$

EXPERIMENT – 18

Aim : To identify the functional group in the given organic compound.

Apparatus Required : Test tube, test tube stand, test tube holder, dropper litmus (blue) solution, dil HCl, NaOH, Na metal, dil H₂SO₄, CH₃COOH.

Physical Properties:

Premm	mary test :		
Flamma	ability:	Burn with non-sooty flame (Alipha	atic)
Water S	Solubility:	Soluble in Water	
Odour:		Spirit Like	
Colour:		Colourless	
State:		Liquid	

S.no.	Experiment	Observation	Inference
1	Organic compound + blue litmus solution.	No change	-COOH or – OH(Phenol)

			group absent
2	Organic compound + dil HCl + NaOH	No ppt. or oily layer	- NH ₂ grp. Absent
3	Organic comp + Na metal	H ₂ gas evolved	- OH (alcohol) Group may be

Confirmatory test :

S.no.	Experiment	Observation	Inference
1	Cerric ammonium nitrate	Red colour	- OH group.
	Organic compound + cerric ammonium nitrate		commed
2	Ester Test : Organic compound + $CH_3COOH + Conc. H_2SO_4$ (1 - 2 drops) + Heat.	Fruity smell of ester.	- OH grp. confirmed

Chemical reaction :

1- Na Metal test : - $2ROH + 2Na - OH \longrightarrow 2RONa + H_2 \uparrow$

2- CERRIC AMMONIUM NITRATE TEST :

 $2ROH + (NH_4)_2 Ce(NO_3)_6 \longrightarrow (ROH)_2 Ce(NO_3)_4 + 2NH_4NO_3$

(Red Colour)

3- Easter Test :

$$ROH + RCOOH \xrightarrow{conc.} RCOOR + H_2O$$

Alcohol acid ester **Result :** The functional group present in organic compound is alcohol group (-OH).

EXPERIMENT – 19

Aim : To identify the functional group in the given organic compound.

Apparatus Required : Test tube, test tube stand, test tube holder, dropper litmus (blue) $NaHCO_{3}$, FeCl₃ Solution, Phthalic anhydride, Con. H₂SO₄, NaOH.

Physical Properties:

State:	Solid
Colour:	White
Odour:	Phenolic Smell
Water Solubility:	Water insoluble
Flammability:	Burn with non-sooty flame (Aromatic)

Preliminary test :

S.no.	Experiment	Observation	Inference
1	Organic compound + blue	Blue litmus turn	-COOH or
	litmus solution.	Red	phenolic – (OH)
			may be
2	NaHCO ₃ test :	No effervescence	- COOH absent
	Organic compound +		Phenolic group
	NaHCO ₃ solution.		may be
			-

Confirmatory test :

S.no.	Experiment	Observation	Inference
1	FeCl ₃ Test :	Green blue or	Phenolic (- OH)
	Organic compound + FeCl ₃	violet	group. confirmed
		colouration	
2	Phthalic test :	Intense green	Phenol (- OH) grp.

Organic compound +	blue or red	Confirmed
pthalic acid + 2-3 drops	colouration	
$H_2SO_4 + \Delta$.then cool and		
dil. NaOH		

Chemical Reaction :

Confirmative test : FeCl₃ test $3C_1H_1OH_2+E_2Cl_3$

(Violet) **Result :** The given organic comp. contains phenolic (-OH) grp.

EXPERIMENT – 20

Aim : To identify the functional group in present in the given organic compound. **Apparatus Required :** Test tube, test tube stand, test tube holder, dropper, litmus solution, 2,4 DNP, dil HCl, NaOH, reagent, Fehling solution, Schiff reagent.

Physical Properties:	
State:	Liquid
Colour:	Colourless
Odour:	Pungent
Water Solubility:	Soluble in Water
Flammability:	Burn with non-sooty flame (Aliphatic)

Preliminary test :

S.no.	Experiment	Observation	Inference
1	Organic compound + blue	No change	-COOH or
	litmus solution.	-	phenolic group
			absent
2	Organic compound +	No ppt or oily	- NH ₂ gup.
	NaOH+ dil HCl	layer	Absent
3	Organic comp $+ 2$ ml of 2,	Orange – red ppt.	- CHO or ketonic
	4 DNP shake & allow it to		- group present.
	stand.		
Confir	matory test :		

Commi				
S.no.	Experiment	Observation	Inference	
1	Schiff's solution test :	Pink colour	-CHO group present	
	Organic compound + 2 ml of Schiff's reagent.	Obtained		
2	Fehling's solution test : Organic compound +	Red ppt.	- CHO grp present.	
	Fehling's solution $(A + B)$ + boil in a water bath			

)

Result : Given organic compound contains aldehydic grp. (- CHO)

EXPERIMENT – 21

Aim : To identify the functional group in present in the given organic compound. Apparatus Required : Test tube, test tube stand, test tube holder, dropper, litmus solution, 2,4 DNP, dil HCl, NaOH, sodium, nitro pruside, meta dinitro benzene

Physical Properties:	
State:	Liquid
Colour:	Colourless
Odour:	Nail paint remover like
Water Solubility:	Water soluble
Flammability:	Burn with non-sooty flame (Aliphatic)
Dualiminany tost	• • • •

Preliminary test :

S.no.	Experiment	Observation	Inference
1	Organic compound + blue litmus	No change	-COOH or
	solution.		phenolic group
			absent
2	Organic compound + NaOH+ dil	No ppt or oily	- NH ₂ gup.
	HC1	layer	Absent
		-	
3	Organic comp $+$ 2 ml of 2, 4 DNP	Orange – red ppt.	- CHO or ketonic
	shake & allow it to stand.		- group present.

Confirmatory test :

S.no.	Experiment	Observation	Inference
1	Organic compound + sodium nitro prusside + 2	Red colour or wine	-CHO group present
	– 3 drops of NaOH and shake.	red colour	
2	Organic compound + Meta dinitrobenzene +	Violet colour which	Ketonic grp confirmed.
	NaOH	fades on standing.	

Chemical reaction :

1-**Preliminary test :**

b- Confirmatory test :

(i) Sodium Nitroprousside Test :

$$O$$

$$\parallel$$

$$CH_{3} - C - CH_{3} + OH^{(-)} \longrightarrow CH_{3}COCH_{2}^{(-)} + H_{2}O$$

$$O$$

$$\parallel$$

$$[Fe(CN)_{5}NO]^{2^{-}} + CH_{3} C - C\overset{\Theta}{H}_{2} \rightarrow \left[Fe(CN)_{5}NO CH_{3} - C - CH_{2}\right]^{-3}$$
Result : Given organic compound contains Ketonic group (>C = 0)

EXPERIMENT – 22

Aim : To study carbohydrates in pure form of detect its presence in food.

Appeartus required : Test tube, test tube stand, test tube holder, burner etc.

Theory : Carbohydrates are Polyhydroxy aldehydes or polyhydroxy ketones, their derivatives and the substance which yield them on hydrolysis carbohydrates are classified as sugars and non sugars. Sugars like glucose, fructose and cane sugar are crystalline. Among sugars, glucose, fructose and lactose are reducing while sucrose is non reducing sugar.

Test :

	Experiment	Observation	Inference
1	Conc. H ₂ SO ₄ test:	Charring with	Carbohydrates present.
	Sample +	burnt sugar	
	Conc. H_2SO_4 + Heat	smell.	
2	Molisch test :	Reddish purple	Carbohydrates present.
	Aq. Solution of sample + 2	ring in formed	
	drops of 1% α naphthol	at the junction	
	+ conc. H ₂ SO ₄ .	of 2 layers	
3	Fehling solution test :	Red ppt	Reading
	Sample solution + 1 ml of		Sugar persent
	fehling $A + 1 ml$ of Fehling B		
	$+\Delta$		
4	Tollens reagent :	Silver mirror is	Reducing sugar present.
	Aq. Solution of sample $+2$	formed along	
	ml of Tollens eagent + Δ	the surface of	
		test tube.	
5	Benedit's Solution test:	Red ppt	Reducing sugar present
	Aq solution of sample +		
	Benedict's reagent + Heat		
6	Iodine test :	Violet colour	Starch is present.
	Sample Solution + few drops		
	of iodine solution		

Result : Carbohydrates is present.

EXPERIMENT – 23

Aim : To study fat in pure form and to detect into presence in given food sample.

Apparatus required : Test tube stand, test tube holder, burner etc.

Theory : Fats and oil are esters of long chain fatty acids and glycerol and thus also called glycerides. Fats contains saturated fatty acids while oil contain unsaturated fatty acids.

Test :

S.no.	Experiment	Observation	Inference
1	Spot Test : Put a small amount of	Translucent spot	Fat is present.

	sample on a filter paper and press	appears on the filter		
	with another filter paper.	paper		
2	Acrolein test :	Irritating smell	Fat is present	
	Take a few drops of sample in a	appears due to the		
	test tube. Add few drops of	form of acrolein		
	potassium bisulphite to it and	vapours.		
	Heat.			
3	Solubility test :	Sample does not		
	Take a small amount of sample in	dissolve in H ₂ O but is		
	3 test tubes. Add water, alcohol	soluble in alcohol on		
	and chloroform in 1, 2, 3 test	heating and soluble	Fat is present	
	tube respectively.	in chloroform.		
	Result : Fat is present.			

EXPERIMENT – 24

Aim : To study proteins from sample and detect their presence in food sample.

Apparatus required : Test tube stand, test tube holder, glass rod, burner etc.

Theory : Proteins are high molecular mass, long chain polymers composed of α amino acid. Amino acids are molecule that have both -NH₂ and -COOH group. **Test :**

S.no.	Experiment	Observation	Inference
1.	Biuret test : Sample + NaOH +	Bluish violet colour	Protein is present
	Dil CuSO ₄ solution	appears	
2.	Xanthoprotein test :	Yellow ppt.	Protein is present
	Sample + few drops of		
	conc.HNO ₃ + Δ		
3.	Million's test :	White ppt	Protein is present
	Sample + 2 drops of millions	which changes to	
	reagent + Δ	brick red on boiling	
4.	Ninhydrin test :	Blue colour appear	Protein is present
	Protein sample + Few drops of		
	ninhydrin solution + Boil the		
	contents for 1 minute		

Result : Protein is present.